During rush hour fernando can drive 20 miles using the side


1.During rush hour, Fernando can drive 20 miles using the side roads in the same time that it takes to travel 15 miles on the freeway.  If Fernando's rate on the side roads is 9 mi/h faster than his rate on the freeway, find his rate on the side roads.

A)  38    B)  36    C)  27    D)  29

2. Evaluate the expression –x2 + 1 for x = –5.

A) 26

B) –24

C) 24

D) –30

3. True or False:  The following relation is a function.

{(Des Moines, 450), (San Francisco, 1135), (Dallas, 875), (Dallas, 1252)}

4. True or False:  The following relation is a function.

{(Mary, 3), (Luigi, 3), (Estella, 4), (Luigi, 4), (Lars, 7)}

5. True or False:  The following relation, given as a table of values, is a function.

           x             y

           1            4

           4             7

           1            8

           7            6

6. Use the table to find h(3).

   x   h(x)

  -8   -25

  -3    3

   3    4

   10    -3

A) –3

B) 4

C) –3

D) 10

7. Use the table to find g(–6).

     x     g(x)

     –9 –78

     –6 –33

     –5 –22

     –3 –6

A) –33

B) –6

C) –22

D) –78

8. Let  f(x) = 5x + 8 and g(x) = –16x + 11.  Find  (f + g)(x).

A) 11x + 3

B) –11x + 19

C) 21x + 19

D) –11x + 19

9. Let  f(x) = 4x + 6 and g(x) = 8x + 5.  Find (f • g)(x).

A) 12x2 + 23x + 11

B) 32x2 + 68x + 30

C) 32x2 + 68x + 30

D) 32x2 + 13x + 30

10. Use the following tables to evaluate (g * f)(1).

x f(x) x g(x)

–3 2 –6 –3

–1 –6 0 2

1 7 2 0

3 0 7 –1

A) –3

B) –1

C) 0

D) 2

11. Use the following tables to evaluate (h * f)(–1).

x f(x) x h(x)

–2 3 –8 5

–1 –6 –1 –2

0 5 3 3

1 –2 5 –5

A) 3

B) –2

C) –6

D) Does not exist

12. Let f(x) =  –x – 2 and g(x) = –x2 + 1.  Find  

A) –3

B) 0

C) –2

D) 1

E) Does not exist

13. Let  g(x) = x – 2.   Find  (–3).

A) –5

B) –7

C) –1

D) –3

14. Rewrite the function h(x) = –2x + 4 as a composite of functions  f(x) = x – 2 and  g(x) = –2x.

A) h(x) = (f ? f)(x)

B) h(x) = (f ? g)(x)

C) h(x) = (g ? f)(x)

D) h(x) = (g ? g)(x)

15. The total cost in hundreds of dollars of producing x items per hour in an 8-hour shift is given by the function C(x) = 15x.  Suppose that the number of items produced per hour for an 8-hour period is a function of the time t after an 8-hour shift begins and is given by x(t) = –t2 + 7t + 8,  .  Write a function f(t) to represent the hourly cost in hundreds of dollars at time t.

A) f(t) = –15t2 + 105t + 120

B) f(t) = –225t2 + 105t + 8

C) f(t) = –t2 + 105t + 8

D) f(t) = –t2 + 7t + 120

 

Solution Preview :

Prepared by a verified Expert
Mathematics: During rush hour fernando can drive 20 miles using the side
Reference No:- TGS0802408

Now Priced at $15 (50% Discount)

Recommended (96%)

Rated (4.8/5)