Determine the weights for the tangent portfolio


PART 1


weekly closing price



weekly return



date

CBA.AX

PWR

DJS.AX

ASX 200

CBA.AX

PWR

DJS.AX

ASX 200

9/01/2012

49.94

22.04

2.37

4181

0.0086851

0.014733

-0.028689

0.0176463

3/01/2012

49.51

21.72

2.44

4108.5

0.0058919

0.0083565

0.0295359

0.012794

28/12/2011

49.22

21.54

2.37

4056.6

-0.011845

-0.0146386

-0.024691

-0.02024

19/12/2011

49.81

21.86

2.43

4140.4

0.0138408

0.0454328

-0.116364

-0.00452

12/12/2011

49.13

20.91

2.75

4159.2

0.0059378

0.0009574

0.0299625

-0.010421

5/12/2011

48.84

20.89

2.67

4203

-0.014329

0.0116223

-0.076125

-0.019823

28/11/2011

49.55

20.65

2.89

4288

0.0916501

0.0943296

0.0783582

0.0762242

21/11/2011

45.39

18.87

2.68

3984.3

-0.0490258

-0.0253099

-0.154574

-0.046134

14/11/2011

47.73

19.36

3.17

4177

-0.0375076

0.0104384

-0.033537

-0.027813

7/11/2011

49.59

19.16

3.28

4296.5

0.0114216

-0.1255135

0.0218069

0.0035972

31/10/2011

49.03

21.91

3.21

4281.1

-0.0186149

0.0101429

-0.088068

-0.016585

24/10/2011

49.96

21.69

3.52

4353.3

0.0506835

0.0637567

0.1139241

0.0510394

17/10/2011

47.55

20.39

3.16

4141.9

0.0010526

0.0164506

0.0639731

-0.015146

10/10/2011

47.5

20.06

2.97

4205.6

0.027027

0.0437045

0.0102041

0.0102573

3/10/2011

46.25

19.22

2.94

4162.9

0.0153677

0.0228845

0.0243902

0.0384922

26/09/2011

45.55

18.79

2.87

4008.6

0.0512347

-0.0126117

0.1434263

0.0270035

19/09/2011

43.33

19.03

2.51

3903.2

-0.0493638

0.0106213

-0.019531

-0.059334

12/09/2011

45.58

18.83

2.56

4149.4

-0.0385995

0.0590551

-0.082437

-0.010799

5/09/2011

47.41

17.78

2.79

4194.7

-0.0023148

-0.0089186

-0.003571

-0.01136

29/08/2011

47.52

17.94

2.8

4242.9

0.0031666

-0.0099338

0.0332103

0.0102143

22/08/2011

47.37

18.12

2.71

4200

0.0306789

0.1143911

0.0423077

0.0019323

15/08/2011

45.96

16.26

2.6

4191.9

-0.053542

-0.0818746

0.04

0.0046254

8/08/2011

48.56

17.71

2.5

4172.6

0.049719

0.0207493

-0.056604

0.0163687

1/08/2011

46.26

17.35

2.65

4105.4

-0.0610919

-0.0631749

-0.070175

-0.072142

25/07/2011

49.27

18.52

2.85

4424.6

-0.0247427

-0.0613279

-0.059406

-0.038736

18/07/2011

50.52

19.73

3.03

4602.9

0.0305998

0.0313643

0.0133779

0.0289259

11/07/2011

49.02

19.13

2.99

4473.5

-0.0531196

-0.0668293

-0.231362

-0.038928

4/07/2011

51.77

20.5

3.89

4654.7

-0.0028891

-0.0019474

0.040107

0.0138308

27/06/2011

51.92

20.54

3.74

4591.2

0.0154508

0.0554985

-0.057935

0.0184335

20/06/2011

51.13

19.46

3.97

4508.1

0.0325121

0.0345561

0.039267

0.0051729

14/06/2011

49.52

18.81

3.82

4484.9

-0.0014116

0.0037353

-0.020513

-0.016922

6/06/2011

49.59

18.74

3.9

4562.1

0.0016158

-0.0173047

0.0025707

-0.004582

30/05/2011

49.51

19.07

3.89

4583.1

0.2084452

-0.0265442

-0.058111

-0.021541

23/05/2011

40.97

19.59

4.13

4684

-0.2146828

-0.0075988

-0.016667

-0.010186

16/05/2011

52.17

19.74

4.2

4732.2

0.0081159

0.0005068

-0.016393

0.0044148

9/05/2011

51.75

19.73

4.27

4711.4

-0.0167205

0.0076609

-0.004662

-0.006662

2/05/2011

52.63

19.58

4.29

4743

-0.020108

-0.0968635

-0.031603

-0.016628

27/04/2011

53.71

21.68

4.43

4823.2

0.0103461

0.0231241

-0.030635

-0.018438

18/04/2011

53.16

21.19

4.57

4913.8

0.0180008

0.0100095

0.0178174

0.0127161

11/04/2011

52.22

20.98

4.49

4852.1

-0.0165725

-0.0683837

0.0181406

-0.017913

4/04/2011

53.1

22.52

4.41

4940.6

0.0068259

-0.0118473

0.0022727

0.016208

28/03/2011

52.74

22.79

4.4

4861.8

0.0169688

0.0124389

0.0185185

0.0251339

21/03/2011

51.86

22.51

4.32

4742.6

0.0306041

0.0392428

0.0261283

0.0251167

14/03/2011

50.32

21.66

4.21

4626.4

-0.0106174

-0.0304387

0.0047733

-0.003961

7/03/2011

50.86

22.34

4.19

4644.8

-0.0339981

-0.0071111

-0.021028

-0.045125

28/02/2011

52.65

22.5

4.28

4864.3

-0.0082878

0.0098743

0.0118203

0.005748

21/02/2011

53.09

22.28

4.23

4836.5

-0.0204797

-0.0614996

-0.023095

-0.020297

14/02/2011

54.2

23.74

4.33

4936.7

-0.0166909

-0.0100083

0.053528

0.0114323

7/02/2011

55.12

23.98

4.11

4880.9

0.038824

0.0165324

-0.059497

0.0037428

31/01/2011

53.06

23.59

4.37

4862.7

0

0

0

0

 

Expected Return

0.0001656

-0.0003573

-0.010323

Standard Deviation

0.0524833

0.0450622

0.0629435

Variance


0.0028119

0.0020729

0.0040444






COVARIANCE





CBA.AX

PWR

DJS.AX

ASX 200

CBA.AX

0.002754497




PWR

0.000696669

0.002031



DJS.AX

0.000852572

0.000608

0.003962


ASX 200

0.000624687

0.000573

0.00102

0.000718






CORRELATION





CBA.AX

PWR

DJS.AX

ASX 200

CBA.AX

1




PWR

0.294573285

1



DJS.AX

0.258082823

0.214269

1


ASX 200

0.444220925

0.474876

0.604982

1











stock

utility




CBA.AX

-0.00258895


A=

2

PWR

-0.00238794




DJS.AX

-0.01428537




Question:

Your first task is to select three stocks of your choice that are listed on the stock exchanges in one of the following countries: Australia, Singapore, Hong Kong or Malaysia. The stocks should be chosen from different industry groups. Visit the Yahoo Finance website or any other source that provides historical stock price data. Extract the weekly closing share prices (for example every Friday) for the most recent 52 weeks (period ending 1 July 2011 or later). Extract also the weekly closing values of the corresponding stock market index (i.e, the ASX 200 in Australia, the Straits Times Index in Singapore, the Hang Seng Index in Hong Kong, or the Kuala Lumpur Composite Index in Malaysia - choose only ONE) over the same time period. Using this data, calculate the weekly returns for each stock and the index. (5 marks)

Using the weekly returns, calculate and explain the following:

  • mean return;
  • standard deviation and variance;
  • covariance between pairs of stocks, and between each stock and the market index; and,
  • correlation coefficient for pairs of stocks, and for each stock and the index.

Based on your calculations, prepare an assessment of the risk-return profiles for each stock and the market index. Use charts or graphs as you deem necessary to augment your discussion (10 marks).

Assume your utility function is given by:  U = E(r) - 1/2 A 2  (where A is your degree of risk aversion). Based on your calculations for the three stocks, which stock is you preferred investment? (You may choose a value for A assuming that the value of A can be between 1 and 5). 

PART 2

mean return

-0.003505094

-0.002183719

0.0001656

-0.002547

standard deivation

0.038489618

0.037080018

0.0530272

0.0371527

variance

0.001481451

0.00137493

0.002812

0.00138

 


Portfolio weights

 

 

 

 





CBA.AX

PWR

DJS.AX

Constraint

VAR R(p)





0.301746

0.499158

0.199095861

0.999999991

0.32999999














weight efficient








cba

pwr

djs

con1

con2

var




 1

  0

 0

 1

40917

0.33













weight optimal








cba

pwr

          djs

Con

er

var

sd

slope


0.283147

0.482338

0.234515721

   1

-0.00255

0.001371

0.3703

-2.57

 

Stocks

Expected Return

VAR

COV

PAIR

Rf=

0.092706

CBA.AX

0.0001656

0.0028119

0.000696669

1,2



PWR

-0.0003573

0.0020729

0.000852572

1,3



DJS.AX

-0.010323

0.0040444

0.000608

2,3



 

risk-free rate =

0.092706

Question :

This section requires you to construct a portfolio using the stocks you selected in Part 1.

Combine the stocks using equal weights. Calculate the mean return and variance for your portfolio. Compare these with the returns and variances of your individual stocks. What do you observe? Explain using concepts you have learnt in the course.

Once you have done this, extract the average weekly Treasury bill rate (a proxy for the risk free rate) from the financial data sources in the country that you chose. (For example, if you selected Australia, you can use the Treasury bill rate, or equivalently the 180-day bank accepted bill (BAB) rate, which are available from the Reserve Bank of Australia website:

http: //www.rba.gov.au/statistics/tables/index.html#interest_rates) over your sample period. Note that reported yields are usually annualised figures so you will need to convert the yields to weekly numbers before calculating the average rate. Use this rate as a proxy for the risk-free rate.

Your next task is to calculate the minimum variance portfolio and the efficient frontier of risky portfolios. To do this you are encouraged to make use of the Solver tool in MS Excel. Refer to Chapter 7 appendix A in the textbook to assist you.

Plot the minimum variance portfolio and the efficient frontier of risky portfolios, along with the individual stocks, the market index and the equal weighted portfolio on a graph.

Determine the weights for the tangent portfolio (optimal risky portfolio) along with its risk and return. What do you observe? Explain using concepts you have learnt in the course. (25 marks)

PART 3

This part of your assignment requires you to undertake security risk analysis.

For each of your three stocks, estimate a 'Security Characteristic Line' using the regression tool in MS Excel. Remember to use excess returns based on the data you collected in Part 1, and the risk-free rate you extracted in Part 2.

Based on the regression output, comment on the risk profile of each stock and make comparisons between them. Your discussion should include, but not be restricted to the following: beta; total risk (variance); systematic risk; and non-systematic risk.

Request for Solution File

Ask an Expert for Answer!!
Finance Basics: Determine the weights for the tangent portfolio
Reference No:- TGS0551878

Expected delivery within 24 Hours