Define the linearity property of fourier transform


Assignment:

1) Compute the Fourier transform for x(t) = te-tu(t).

  • X(ω) =1 / 1+ω2-j2ωw
  • X(ω) = 1 / jw+1
  • X(ω) = 1 / 1-ω2+j2ω
  • X(ω) = 1 / (jw-1)2

2) The linearity property of the Fourier transform is defined as:

  • X(t) ↔ 2πx(-ω)
  • x(t-c) ↔ X(ω)e-jωc
  • Ax(t) + bv(t) ↔ aX(ω) + bV(ω)
  • ∫t-∞x(λ)dλ ↔ 1 / jω X(ω) + πX(0)δ(ω)

3) Determine the exponential Fourier series for:

x(t) = k=-∞ Σδ( t- kT )

  • x(t) = k=-∞ Σe j 2 πk t/ T
  • x(t) = k=-∞ Σ∞1e/ T jt
  • x(t) = k=-∞ Σ∞ 1e/ T j 2πk t/ T      
  • x(t) = k=0 Σt 1e/ t j 2πk t/ T    

4) Using complex notation, combine the expressions to form a single sinusoid for:

 cos (10t + π/ 2) + 2cos ( 10t - π/ 3)

  • 2 cos(10t - π/6)
  • 1.239 cos(10t-0.6319)
  • 1.475 cos(10t-0.5231)
  • 0.6319 cos(10t+ 1.239)

5) The polar notation for the function 1 + ej4 is:

  • cos(2) + 1
  • ej2[2cos(2)]
  • e-j4sin(2)
  • ej4sin(4)

6 ) The duality property of the Fourier transform is defined as:

  • X(t) ↔ 2πx(-ω)
  • x(t-c) ↔ X(ω)e-jωc
  • ax(t) + bv(t) ↔ aX(ω) + bV(ω)
  • ∫t-∞x(λ)dλ ↔ 1 x(ω)/ jω + πX(0)δ(ω)

7 ) A continuous time signal x(t) has the Fourier transform:

X(ω) = 1 / jωw+b

where b is a constant. Determine the Fourier transform for v(t) = t2x(t).

  • V(ω) = 2/ (jω+b)3
  • V(ω) = -∞ Σ∞ 1 e/ T jω
  • V(ω) = 1/ (jω+b)2
  • V(ω = 0Σn e j 2πk/ T

8 ) Compute the inverse Fourier transform for X(ω) = cos4ω.

  • x(t) = π[δ(t + 4) - δ(t - 4)]
  • x(t) = π/2[δ(t + 4) - δ(t - 4)]
  • x(t) = 1/2[δ(t + 4) - δ(t - 4)]
  • x(t) = 1/4[δ(t + 4) - δ(t - 4)]

9 ) A continuous time signal x(t) has the Fourier transform:

X(ω) = 1/ jω+b

where b is a constant. Determine the Fourier transform for v(t) = x(t) * x(t).

  • V(ω) = -2ω/ jω+2b
  • V(ω) = 1/ (b+jω)2
  • V(ω) = 1/ (b-jω)2
  • V(ω) = -ω2/ jω+b

10 )The polar notation for the function 1 + ej4 + ej2 is:

  • cos(2) + 1
  • ej2[2cos(2)]
  • e-j4sin(2)
  • ej2(1+2cos(2))

Solution Preview :

Prepared by a verified Expert
Engineering Mathematics: Define the linearity property of fourier transform
Reference No:- TGS01940209

Now Priced at $30 (50% Discount)

Recommended (97%)

Rated (4.9/5)