Assignment:
1) Compute the Fourier transform for x(t) = te-tu(t).
- X(ω) =1 / 1+ω2-j2ωw
- X(ω) = 1 / jw+1
- X(ω) = 1 / 1-ω2+j2ω
- X(ω) = 1 / (jw-1)2
2) The linearity property of the Fourier transform is defined as:
- X(t) ↔ 2πx(-ω)
- x(t-c) ↔ X(ω)e-jωc
- Ax(t) + bv(t) ↔ aX(ω) + bV(ω)
- ∫t-∞x(λ)dλ ↔ 1 / jω X(ω) + πX(0)δ(ω)
3) Determine the exponential Fourier series for:
x(t) = k=-∞ Σ∞δ( t- kT )
- x(t) = k=-∞ Σ∞ e j 2 πk t/ T
- x(t) = k=-∞ Σ∞1e/ T jt
- x(t) = k=-∞ Σ∞ 1e/ T j 2πk t/ T
- x(t) = k=0 Σt 1e/ t j 2πk t/ T
4) Using complex notation, combine the expressions to form a single sinusoid for:
cos (10t + π/ 2) + 2cos ( 10t - π/ 3)
- 2 cos(10t - π/6)
- 1.239 cos(10t-0.6319)
- 1.475 cos(10t-0.5231)
- 0.6319 cos(10t+ 1.239)
5) The polar notation for the function 1 + ej4 is:
- cos(2) + 1
- ej2[2cos(2)]
- e-j4sin(2)
- ej4sin(4)
6 ) The duality property of the Fourier transform is defined as:
- X(t) ↔ 2πx(-ω)
- x(t-c) ↔ X(ω)e-jωc
- ax(t) + bv(t) ↔ aX(ω) + bV(ω)
- ∫t-∞x(λ)dλ ↔ 1 x(ω)/ jω + πX(0)δ(ω)
7 ) A continuous time signal x(t) has the Fourier transform:
X(ω) = 1 / jωw+b
where b is a constant. Determine the Fourier transform for v(t) = t2x(t).
- V(ω) = 2/ (jω+b)3
- V(ω) = -∞ Σ∞ 1 e/ T jω
- V(ω) = 1/ (jω+b)2
- V(ω = 0Σn e j 2πk/ T
8 ) Compute the inverse Fourier transform for X(ω) = cos4ω.
- x(t) = π[δ(t + 4) - δ(t - 4)]
- x(t) = π/2[δ(t + 4) - δ(t - 4)]
- x(t) = 1/2[δ(t + 4) - δ(t - 4)]
- x(t) = 1/4[δ(t + 4) - δ(t - 4)]
9 ) A continuous time signal x(t) has the Fourier transform:
X(ω) = 1/ jω+b
where b is a constant. Determine the Fourier transform for v(t) = x(t) * x(t).
- V(ω) = -2ω/ jω+2b
- V(ω) = 1/ (b+jω)2
- V(ω) = 1/ (b-jω)2
- V(ω) = -ω2/ jω+b
10 )The polar notation for the function 1 + ej4 + ej2 is:
- cos(2) + 1
- ej2[2cos(2)]
- e-j4sin(2)
- ej2(1+2cos(2))