Create three subplots 1x3 showing utht vs ton each subplot


1.) Save Table 1 below in an excel file called 'Superheat' and complete the instructions that follow:

Table 1: Properties of Superheated Steam at three different Pressures (1MPa =10116 N/m^2)

Temp

°C

p1=0.20 MPa (120.2 C)

p2=0.30 MPa (133.5 C)

p3=0.40 MPa (143.6 C)

volume
v1(m^3/kg)

energy
u1(k)/kg)

enthalpy
h1(k)/kg)

volume
v2(m^3/kg)

energy
u2(k)/kg)

enthalpy
h2(k)/kg)

volume
v3(m^3/kg)

energy
u3(k)/kg)

enthalpy
h3(k)/kg)

150

0.960

2577.1

 

0.634

2571.0

 

0.471

2564.4

2752.8

200

1.081

2654.6

 

0.716

2651.0

 

0.534

2647.2

2860.8

250

1.199

2731.4

 

0.796

2728.9

 

0.595

2726.4

2964.4

300

1.316

2808.8

 

0.875

2807.0

 

0.655

2805.1

3067.1

350

1.433

2887.3

 

0.954

2885.9

 

0.714

2884.4

3170

400

1.549

2967.1

 

1.032

2966.0

 

0.773

2964.9

3274.1

450

1.666

3048.5

 

1.109

3047.5

 

0.831

3046.6

3379

500

1.781

3131.4

 

1.187

3130.6

 

0.889

3129.8

3485.4

600

2.013

3302.2

 

1.341

3301.6

 

1.006

3301.0

3703.4

700

2.244

3479.9

 

1.496

3479.5

 

1.122

3479.0

3927.8

800

2.476

3664.7

 

1.650

3664.3

 

1.237

3663.9

4158.7

900

2.707

3856.3

 

1.804

3856.0

 

1.353

3855.7

4396.9

1000

2.938

4054.8

 

1.958

4054.5

 

1.469

4054.3

4641.9

a. Use a MATLAB command to import the data from an excel file, as a (13x10) matrix 'SteamProps'

b. Given that h=u+pv, use the column vectors of the 'SteamProps' matrix with operations to extract all the known columns of Table 1, find hi, h2 in kJ/kg, and show the new 'SteamProps' matrix.

c. Plot v(T) v/s Ton the same graph for pressures pi, p2,p3. Show the title, legend, and labelled axes.

d. Create three subplots (1x3) showing u(T),h(T) v/s Ton each subplot for these 3 pressures , with titles, labelled axes, and legends for T in the range [200, 800] and u/h in the range [2500, 4500].

2.) From Table 2 below showing the Ideal-gas specific heats (in Btu/Ibmol.R ) of various common gases as a function of temperature (in Rankine, °R):

Table 2: Cp of common gases as a function of temperature

Gases

Formula

a

b x 10^2

c x 10^5

d x 10^9

cp(T) = a + bT + cr + dT3
[Btu/Ibmol•R]

T=500°R

T=1000°R

T=2500°R

Nitrogen

N2

6.903

-0.02085

0.05957

-0.11760

 

 

 

Oxygen

02

6.085

0.20170

-0.05275

0.05372

 

 

 

Air

-

6.713

0.02609

0.03540

-0.08052

 

 

 

Hydrogen

H2

6.952

-0.02542

0.02952

-0.03565

 

 

 

Carbon Monoxide

CO

6.726

0.02222

0.03960

-0.09100

 

 

 

Carbon dioxide

CO2

5.316

0.79361

-0.25810

0.30590

 

 

 

Water vapor

H2O

7.700

0.02552

0.07781

-0.14720

 

 

 

a. Create an anonymous function cp(a,b,c,d,n of these parameters and call it for Air at T=678°R

b. Use symbolic computation to obtain the change in internal energy, ΔU = 5801500cvdT for oxygen where cp = cv + R, and the gas constant, R = 48.24 Btu/lbmol•R.

c. Using the matrix multiplication of two matrices 'P' (7x4) and 'R'(4x3) in MATLAB, obtain a matrix 'S' of all the cp values missing in the table. (Hint: i.e. [7x4]*[4x3]=[ 7x3]).

Request for Solution File

Ask an Expert for Answer!!
Mechanical Engineering: Create three subplots 1x3 showing utht vs ton each subplot
Reference No:- TGS0926885

Expected delivery within 24 Hours