1.) Save Table 1 below in an excel file called 'Superheat' and complete the instructions that follow:
Table 1: Properties of Superheated Steam at three different Pressures (1MPa =10116 N/m^2)
Temp
°C
|
p1=0.20 MPa (120.2 C)
|
p2=0.30 MPa (133.5 C)
|
p3=0.40 MPa (143.6 C)
|
volume v1(m^3/kg)
|
energy u1(k)/kg)
|
enthalpy h1(k)/kg)
|
volume v2(m^3/kg)
|
energy u2(k)/kg)
|
enthalpy h2(k)/kg)
|
volume v3(m^3/kg)
|
energy u3(k)/kg)
|
enthalpy h3(k)/kg)
|
150
|
0.960
|
2577.1
|
|
0.634
|
2571.0
|
|
0.471
|
2564.4
|
2752.8
|
200
|
1.081
|
2654.6
|
|
0.716
|
2651.0
|
|
0.534
|
2647.2
|
2860.8
|
250
|
1.199
|
2731.4
|
|
0.796
|
2728.9
|
|
0.595
|
2726.4
|
2964.4
|
300
|
1.316
|
2808.8
|
|
0.875
|
2807.0
|
|
0.655
|
2805.1
|
3067.1
|
350
|
1.433
|
2887.3
|
|
0.954
|
2885.9
|
|
0.714
|
2884.4
|
3170
|
400
|
1.549
|
2967.1
|
|
1.032
|
2966.0
|
|
0.773
|
2964.9
|
3274.1
|
450
|
1.666
|
3048.5
|
|
1.109
|
3047.5
|
|
0.831
|
3046.6
|
3379
|
500
|
1.781
|
3131.4
|
|
1.187
|
3130.6
|
|
0.889
|
3129.8
|
3485.4
|
600
|
2.013
|
3302.2
|
|
1.341
|
3301.6
|
|
1.006
|
3301.0
|
3703.4
|
700
|
2.244
|
3479.9
|
|
1.496
|
3479.5
|
|
1.122
|
3479.0
|
3927.8
|
800
|
2.476
|
3664.7
|
|
1.650
|
3664.3
|
|
1.237
|
3663.9
|
4158.7
|
900
|
2.707
|
3856.3
|
|
1.804
|
3856.0
|
|
1.353
|
3855.7
|
4396.9
|
1000
|
2.938
|
4054.8
|
|
1.958
|
4054.5
|
|
1.469
|
4054.3
|
4641.9
|
a. Use a MATLAB command to import the data from an excel file, as a (13x10) matrix 'SteamProps'
b. Given that h=u+pv, use the column vectors of the 'SteamProps' matrix with operations to extract all the known columns of Table 1, find hi, h2 in kJ/kg, and show the new 'SteamProps' matrix.
c. Plot v(T) v/s Ton the same graph for pressures pi, p2,p3. Show the title, legend, and labelled axes.
d. Create three subplots (1x3) showing u(T),h(T) v/s Ton each subplot for these 3 pressures , with titles, labelled axes, and legends for T in the range [200, 800] and u/h in the range [2500, 4500].
2.) From Table 2 below showing the Ideal-gas specific heats (in Btu/Ibmol.R ) of various common gases as a function of temperature (in Rankine, °R):
Table 2: Cp of common gases as a function of temperature
Gases
|
Formula
|
a
|
b x 10^2
|
c x 10^5
|
d x 10^9
|
cp(T) = a + bT + cr + dT3 [Btu/Ibmol•R]
|
T=500°R
|
T=1000°R
|
T=2500°R
|
Nitrogen
|
N2
|
6.903
|
-0.02085
|
0.05957
|
-0.11760
|
|
|
|
Oxygen
|
02
|
6.085
|
0.20170
|
-0.05275
|
0.05372
|
|
|
|
Air
|
-
|
6.713
|
0.02609
|
0.03540
|
-0.08052
|
|
|
|
Hydrogen
|
H2
|
6.952
|
-0.02542
|
0.02952
|
-0.03565
|
|
|
|
Carbon Monoxide
|
CO
|
6.726
|
0.02222
|
0.03960
|
-0.09100
|
|
|
|
Carbon dioxide
|
CO2
|
5.316
|
0.79361
|
-0.25810
|
0.30590
|
|
|
|
Water vapor
|
H2O
|
7.700
|
0.02552
|
0.07781
|
-0.14720
|
|
|
|
a. Create an anonymous function cp(a,b,c,d,n of these parameters and call it for Air at T=678°R
b. Use symbolic computation to obtain the change in internal energy, ΔU = 580∫1500cvdT for oxygen where cp = cv + R, and the gas constant, R = 48.24 Btu/lbmol•R.
c. Using the matrix multiplication of two matrices 'P' (7x4) and 'R'(4x3) in MATLAB, obtain a matrix 'S' of all the cp values missing in the table. (Hint: i.e. [7x4]*[4x3]=[ 7x3]).