Consider coupled system of partial differential equations which are first order and linear is given below
vtX0 + vrX1 + Xt0 = ψ (1)
e2λXt1 - e2vXr0 = 0 (2)
Y2Xt2 - e2vXθ0 = 0 (3)
Y2sin2θXt3 - e2vXΦ0 = 0 (4)
λtX0 + λrX1 + Xr1 = ψ (5)
Y2Xr2 + e2λ Xθ1 = 0 (6)
Y2sin2θXr3 + e2λXΦ1 = 0 (7)
Yt/Y.X0 + Yr/YX1 +Xθ2 = ψ (8)
sin2θXθ3 + XΦ2 = 0 (9)
Yt/Y.X0 + Yr/YX1 + cotθX2 + XΦ3 = ψ (10)
Here subscripts denote partial differentiation'
X0, X1, X2, X3, ψ are non-zero function of r, θ, Φ, t.
In this process the equations tiecoupie, anti nuniber of integrability condition& are generated. Which gives General Solution as
X0 = Y2e-2v sinθ(Ct sinΦ - Dt cosΦ) - Y2e-2vIt cosθ + J (11)
XI = -Y2e-2λ sinθ(Cr sinΦ - Dr cosΦ) - Y2e-2λ Ir cosθ + K (12)
X2 = cosθ [C sinΦ- DcosΦ] + cosθ(a1 sinΦ - a2 cosΦ - a3 sinΦ + a4 cosΦ + Isinθ (13)
X3 = cscθ [C cosΦ- DsinΦ] + cscθ(a1 cosΦ + a2 sinΦ) - cotθ(a3 cosΦ + a4 sinΦ) + a5 (14)
ψ = YsinθsinΦ [Ye-2vCtt + (2Yt - Yvt)e-2vCt - Ye-2λvrCr]
- YsinθcosΦ [Ye-2vDtt + (2Yt - Yvt)e-2vDt - Ye-2λvrDr]
- Ycosθ [Ye-2vItt + (2Yt - Yvt)e-2vIt - Ye-2λvrIr]
+ Jt + vtJ + vrK (15)
where A, C, D, I, J, K, are functions t and r and a1 -a5 are constants. This general solution is subject to the following twelve consistency conditions
YCtr + (Yr - Yvr)Ct + (Yt - Yλt)Cr = 0 (16)
YDtr + (Yr - Yvr)Dt + (Yt - Yλt)Dr = 0 (17)
YItr + (Yr - Yvr)It + (Yt - Yλt)Ir = 0 (18)
Ye-2vCtt + Ye-2λCrr + (2Yt - Yλt - Yvt)e-2vCr + (2Yr - Yλr - Yvr)e-2λCr = 0 (19)
Ye-2vDtt + Ye-2λDrr + (2Yt - Yλt - Yvt)e-2vDt + (2Yr - Yλr - Yvr)e-2λDr = 0 (20)
Ye-2vItt + Ye-2λIrr + (2Yt - Yλt - Yvt)e-2vIt + (2Yr - Yλr - Yvr)e-2λIr = 0 (21)
Y2e-2vCtt + Y(Yt - Yvt)e-2vCt + Y(Yr - Yvr)e-2λCr + C + a1 = 0 (22)
Y2e-2vDtt + Y(Yt - Yvt)e-2vDt + Y(Yr - Yvr)e-2λDr + D + a2 = 0 (23)
Y2e-2vItt + Y(Yt - Yvt)e-2vIt + Y(Yr - Yvr)e-2λIr + I = 0 (24)
e-2λKt - e2vJr = 0 (25)
-Jt + (Yt/Y - vt)J + (Yr/Y - vr) K = 0 (26)
-Jt + Kr + (λt - vt)J + (λr - vr) K = 0 (27)
Question
Give me detailed calculations of equations from 11 to 27 in step by step manner. It means how to obtain equ.11 to 27 in detailed manner.