Coupled system of partial differential equations - give me


Consider coupled system of partial differential equations which are first order and linear is given below

vtX0 + vrX1 + Xt0 = ψ                          (1)

eXt1 - e2vXr0 = 0                             (2)

Y2Xt2 - e2vXθ0 = 0                             (3)

Y2sin2θXt3 - e2vXΦ0 = 0                      (4)

λtX0 + λrX1 + Xr1 = ψ                          (5)

Y2Xr2 + e Xθ1 = 0                            (6)

Y2sin2θXr3 + eXΦ1 = 0                     (7)

Yt/Y.X0 + Yr/YX1 +Xθ2 = ψ                  (8)  

sin2θXθ3 + XΦ2 = 0                             (9)

Yt/Y.X0 + Yr/YX1 + cotθX2 + XΦ3 = ψ    (10)

Here subscripts denote partial differentiation'

X0, X1, X2, X3, ψ are non-zero function of r, θ, Φ, t.

In this process the equations tiecoupie, anti nuniber of integrability condition& are generated. Which gives General Solution as

X0 = Y2e-2v sinθ(Ct sinΦ - Dt cosΦ) - Y2e-2vIt cosθ + J                                         (11)

XI =  -Y2e-2λ sinθ(Cr sinΦ - Dr cosΦ) - Y2e-2λ Ir cosθ + K                                      (12)

X2 = cosθ [C sinΦ- DcosΦ] + cosθ(a1 sinΦ - a2 cosΦ - a3 sinΦ + a4 cosΦ + Isinθ       (13)

X3 = cscθ [C cosΦ- DsinΦ] + cscθ(a1 cosΦ + a2 sinΦ) - cotθ(a3 cosΦ + a4 sinΦ) + a5     (14)

ψ = YsinθsinΦ [Ye-2vCtt + (2Yt - Yvt)e-2vCt - Ye-2λvrCr]

      - YsinθcosΦ [Ye-2vDtt + (2Yt - Yvt)e-2vDt - Ye-2λvrDr]

      - Ycosθ [Ye-2vItt + (2Yt - Yvt)e-2vIt - Ye-2λvrIr]

      + Jt + vtJ + vrK                                                                                          (15)

where A, C, D, I, J, K, are functions t and r and a1 -a5 are constants. This general solution is subject to the following twelve consistency conditions

YCtr + (Yr - Yvr)Ct + (Yt - Yλt)Cr = 0                                                                  (16)

YDtr + (Yr - Yvr)Dt + (Yt - Yλt)Dr = 0                                                                  (17)

YItr + (Yr - Yvr)It + (Yt - Yλt)Ir = 0                                                                    (18)

Ye-2vCtt + Ye-2λCrr + (2Yt - Yλt - Yvt)e-2vCr + (2Yr - Yλr - Yvr)e-2λCr = 0                (19)

Ye-2vDtt + Ye-2λDrr + (2Yt - Yλt - Yvt)e-2vDt + (2Yr - Yλr - Yvr)e-2λDr = 0                (20)

Ye-2vItt + Ye-2λIrr + (2Yt - Yλt - Yvt)e-2vIt + (2Yr - Yλr - Yvr)e-2λIr = 0                   (21)

 

Y2e-2vCtt + Y(Yt - Yvt)e-2vCt + Y(Yr - Yvr)e-2λCr + C + a1 = 0                               (22)

Y2e-2vDtt + Y(Yt - Yvt)e-2vDt + Y(Yr - Yvr)e-2λDr + D + a2 = 0                               (23)

Y2e-2vItt + Y(Yt - Yvt)e-2vIt + Y(Yr - Yvr)e-2λIr + I = 0                                          (24)

e-2λKt - e2vJr = 0                                                                                             (25)

-Jt + (Yt/Y - vt)J + (Yr/Y - vr) K = 0                                                                    (26)

-Jt + Kr + (λt - vt)J + (λr - vr) K = 0                                                                    (27)

Question

Give me detailed calculations of equations from 11 to 27 in step by step manner. It means how to obtain equ.11 to 27 in detailed manner.

Request for Solution File

Ask an Expert for Answer!!
Mathematics: Coupled system of partial differential equations - give me
Reference No:- TGS01210182

Expected delivery within 24 Hours