Construct frequency distribution and calculate mean range


Construct frequency distribution and calculate mean, range and standard deviation

Relate the characteristics of the normal curve to the distribution of the means of small samples

Select and group sample data based on variable inspection and attribute inspection and calculate appropriate control chart limits

Construct control charts for variables, rejects per unit and percentage defectives per batch

Initiate a control program for a specified application

A factory mass produces resistors of various standard values, in order to test the production processes samples are taken. The following 15 tables show one batch of samples.

Data Set 1

 

Data Set 2

 

Data Set 3

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

1

119

 

1

178.5

 

1

238

2

120

 

2

180

 

2

240

3

119

 

3

178.5

 

3

238

4

121

 

4

181.5

 

4

242

5

118

 

5

177

 

5

236

6

120

 

6

180

 

6

240

7

119

 

7

178.5

 

7

238

8

122

 

8

183

 

8

244

9

123

 

9

184.5

 

9

246

10

120

 

10

180

 

10

240

11

121

 

11

181.5

 

11

242

12

119

 

12

178.5

 

12

238

13

118

 

13

177

 

13

236

14

123

 

14

184.5

 

14

246

15

120

 

15

180

 

15

240

16

121

 

16

181.5

 

16

242

17

119

 

17

178.5

 

17

238

18

118

 

18

177

 

18

236

 

Data Set 4

 

Data Set 5

 

Data Set 6

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

1

297.5

 

1

357

 

1

416.5

2

300

 

2

360

 

2

420

3

297.5

 

3

357

 

3

416.5

4

302.5

 

4

363

 

4

423.5

5

295

 

5

354

 

5

413

6

300

 

6

360

 

6

420

7

297.5

 

7

357

 

7

416.5

8

305

 

8

366

 

8

427

9

307.5

 

9

369

 

9

430.5

10

300

 

10

360

 

10

420

11

302.5

 

11

363

 

11

423.5

12

297.5

 

12

357

 

12

416.5

13

295

 

13

354

 

13

413

14

307.5

 

14

369

 

14

430.5

15

300

 

15

360

 

15

420

16

302.5

 

16

363

 

16

423.5

17

297.5

 

17

357

 

17

416.5

18

295

 

18

354

 

18

413

 

 

 

 

 

 

 

 

 

 

Data Set 7

 

Data Set 8

 

Data Set 9

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

1

476

 

1

535.5

 

1

595

2

480

 

2

540

 

2

600

3

476

 

3

535.5

 

3

595

4

484

 

4

544.5

 

4

605

5

472

 

5

531

 

5

590

6

480

 

6

540

 

6

600

7

476

 

7

535.5

 

7

595

8

488

 

8

549

 

8

610

9

492

 

9

553.5

 

9

615

10

480

 

10

540

 

10

600

11

484

 

11

544.5

 

11

605

12

476

 

12

535.5

 

12

595

13

472

 

13

531

 

13

590

14

492

 

14

553.5

 

14

615

15

480

 

15

540

 

15

600

16

484

 

16

544.5

 

16

605

17

476

 

17

535.5

 

17

595

18

472

 

18

531

 

18

590

 

 

 

 

 

 

 

 

 

Data Set 10

 

Data Set 11

 

Data Set 12

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

1

654.5

 

1

714

 

1

773.5

 

2

660

 

2

720

 

2

780

 

3

654.5

 

3

714

 

3

773.5

 

4

665.5

 

4

726

 

4

786.5

 

5

649

 

5

708

 

5

767

 

6

660

 

6

720

 

6

780

 

7

654.5

 

7

714

 

7

773.5

 

8

671

 

8

732

 

8

793

 

9

676.5

 

9

738

 

9

799.5

 

10

660

 

10

720

 

10

780

 

11

665.5

 

11

726

 

11

786.5

 

12

654.5

 

12

714

 

12

773.5

 

13

649

 

13

708

 

13

767

 

14

676.5

 

14

738

 

14

799.5

 

15

660

 

15

720

 

15

780

 

16

665.5

 

16

726

 

16

786.5

 

17

654.5

 

17

714

 

17

773.5

 

18

649

 

18

708

 

18

767

 

 

 

 

 

 

 

 

 

 

 

 

Data Set 13

 

Data Set 14

 

Data Set 15

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

Sample

Resistance
(Ohms)

 

1

833

 

1

892.5

 

1

952

 

2

840

 

2

900

 

2

960

 

3

833

 

3

892.5

 

3

952

 

4

847

 

4

907.5

 

4

968

 

5

826

 

5

885

 

5

944

 

6

840

 

6

900

 

6

960

 

7

833

 

7

892.5

 

7

952

 

8

854

 

8

915

 

8

976

 

9

861

 

9

922.5

 

9

984

 

10

840

 

10

900

 

10

960

 

11

847

 

11

907.5

 

11

968

 

12

833

 

12

892.5

 

12

952

 

13

826

 

13

885

 

13

944

 

14

861

 

14

922.5

 

14

984

 

15

840

 

15

900

 

15

960

 

16

847

 

16

907.5

 

16

968

 

17

833

 

17

892.5

 

17

952

 

18

826

 

18

885

 

18

944

 

















1. For your given data set of ungrouped data calculate the mean, range and standard deviation.

2. From the information you correlated:

a. Identify the relationship between the normal curve and the mean values

b. Select and group the data based on variable and attribute inspection methodology.

3. Using appropriate control charts, calculate the limits you would use

4. Construct an appropriate control chart for variable inspection methodology, showing rejects per unit and percentage defects per batch

5. Develop and implement an inspection control program for your data.Identify:

a. The inspection methodology used

b. The control charts

c. Frequency of inspection and or the batch size

d. Method of implementation

Request for Solution File

Ask an Expert for Answer!!
Basic Statistics: Construct frequency distribution and calculate mean range
Reference No:- TGS0928449

Expected delivery within 24 Hours