Construct frequency distribution and calculate mean, range and standard deviation
Relate the characteristics of the normal curve to the distribution of the means of small samples
Select and group sample data based on variable inspection and attribute inspection and calculate appropriate control chart limits
Construct control charts for variables, rejects per unit and percentage defectives per batch
Initiate a control program for a specified application
A factory mass produces resistors of various standard values, in order to test the production processes samples are taken. The following 15 tables show one batch of samples.
Data Set 1
|
|
Data Set 2
|
|
Data Set 3
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
1
|
119
|
|
1
|
178.5
|
|
1
|
238
|
2
|
120
|
|
2
|
180
|
|
2
|
240
|
3
|
119
|
|
3
|
178.5
|
|
3
|
238
|
4
|
121
|
|
4
|
181.5
|
|
4
|
242
|
5
|
118
|
|
5
|
177
|
|
5
|
236
|
6
|
120
|
|
6
|
180
|
|
6
|
240
|
7
|
119
|
|
7
|
178.5
|
|
7
|
238
|
8
|
122
|
|
8
|
183
|
|
8
|
244
|
9
|
123
|
|
9
|
184.5
|
|
9
|
246
|
10
|
120
|
|
10
|
180
|
|
10
|
240
|
11
|
121
|
|
11
|
181.5
|
|
11
|
242
|
12
|
119
|
|
12
|
178.5
|
|
12
|
238
|
13
|
118
|
|
13
|
177
|
|
13
|
236
|
14
|
123
|
|
14
|
184.5
|
|
14
|
246
|
15
|
120
|
|
15
|
180
|
|
15
|
240
|
16
|
121
|
|
16
|
181.5
|
|
16
|
242
|
17
|
119
|
|
17
|
178.5
|
|
17
|
238
|
18
|
118
|
|
18
|
177
|
|
18
|
236
|
Data Set 4
|
|
Data Set 5
|
|
Data Set 6
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
1
|
297.5
|
|
1
|
357
|
|
1
|
416.5
|
2
|
300
|
|
2
|
360
|
|
2
|
420
|
3
|
297.5
|
|
3
|
357
|
|
3
|
416.5
|
4
|
302.5
|
|
4
|
363
|
|
4
|
423.5
|
5
|
295
|
|
5
|
354
|
|
5
|
413
|
6
|
300
|
|
6
|
360
|
|
6
|
420
|
7
|
297.5
|
|
7
|
357
|
|
7
|
416.5
|
8
|
305
|
|
8
|
366
|
|
8
|
427
|
9
|
307.5
|
|
9
|
369
|
|
9
|
430.5
|
10
|
300
|
|
10
|
360
|
|
10
|
420
|
11
|
302.5
|
|
11
|
363
|
|
11
|
423.5
|
12
|
297.5
|
|
12
|
357
|
|
12
|
416.5
|
13
|
295
|
|
13
|
354
|
|
13
|
413
|
14
|
307.5
|
|
14
|
369
|
|
14
|
430.5
|
15
|
300
|
|
15
|
360
|
|
15
|
420
|
16
|
302.5
|
|
16
|
363
|
|
16
|
423.5
|
17
|
297.5
|
|
17
|
357
|
|
17
|
416.5
|
18
|
295
|
|
18
|
354
|
|
18
|
413
|
|
|
|
|
|
|
|
|
Data Set 7
|
|
Data Set 8
|
|
Data Set 9
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
1
|
476
|
|
1
|
535.5
|
|
1
|
595
|
2
|
480
|
|
2
|
540
|
|
2
|
600
|
3
|
476
|
|
3
|
535.5
|
|
3
|
595
|
4
|
484
|
|
4
|
544.5
|
|
4
|
605
|
5
|
472
|
|
5
|
531
|
|
5
|
590
|
6
|
480
|
|
6
|
540
|
|
6
|
600
|
7
|
476
|
|
7
|
535.5
|
|
7
|
595
|
8
|
488
|
|
8
|
549
|
|
8
|
610
|
9
|
492
|
|
9
|
553.5
|
|
9
|
615
|
10
|
480
|
|
10
|
540
|
|
10
|
600
|
11
|
484
|
|
11
|
544.5
|
|
11
|
605
|
12
|
476
|
|
12
|
535.5
|
|
12
|
595
|
13
|
472
|
|
13
|
531
|
|
13
|
590
|
14
|
492
|
|
14
|
553.5
|
|
14
|
615
|
15
|
480
|
|
15
|
540
|
|
15
|
600
|
16
|
484
|
|
16
|
544.5
|
|
16
|
605
|
17
|
476
|
|
17
|
535.5
|
|
17
|
595
|
18
|
472
|
|
18
|
531
|
|
18
|
590
|
|
|
|
|
|
|
|
|
Data Set 10
|
|
Data Set 11
|
|
Data Set 12
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
1
|
654.5
|
|
1
|
714
|
|
1
|
773.5
|
|
2
|
660
|
|
2
|
720
|
|
2
|
780
|
|
3
|
654.5
|
|
3
|
714
|
|
3
|
773.5
|
|
4
|
665.5
|
|
4
|
726
|
|
4
|
786.5
|
|
5
|
649
|
|
5
|
708
|
|
5
|
767
|
|
6
|
660
|
|
6
|
720
|
|
6
|
780
|
|
7
|
654.5
|
|
7
|
714
|
|
7
|
773.5
|
|
8
|
671
|
|
8
|
732
|
|
8
|
793
|
|
9
|
676.5
|
|
9
|
738
|
|
9
|
799.5
|
|
10
|
660
|
|
10
|
720
|
|
10
|
780
|
|
11
|
665.5
|
|
11
|
726
|
|
11
|
786.5
|
|
12
|
654.5
|
|
12
|
714
|
|
12
|
773.5
|
|
13
|
649
|
|
13
|
708
|
|
13
|
767
|
|
14
|
676.5
|
|
14
|
738
|
|
14
|
799.5
|
|
15
|
660
|
|
15
|
720
|
|
15
|
780
|
|
16
|
665.5
|
|
16
|
726
|
|
16
|
786.5
|
|
17
|
654.5
|
|
17
|
714
|
|
17
|
773.5
|
|
18
|
649
|
|
18
|
708
|
|
18
|
767
|
|
|
|
|
|
|
|
|
|
|
Data Set 13
|
|
Data Set 14
|
|
Data Set 15
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
Sample
|
Resistance (Ohms)
|
|
1
|
833
|
|
1
|
892.5
|
|
1
|
952
|
|
2
|
840
|
|
2
|
900
|
|
2
|
960
|
|
3
|
833
|
|
3
|
892.5
|
|
3
|
952
|
|
4
|
847
|
|
4
|
907.5
|
|
4
|
968
|
|
5
|
826
|
|
5
|
885
|
|
5
|
944
|
|
6
|
840
|
|
6
|
900
|
|
6
|
960
|
|
7
|
833
|
|
7
|
892.5
|
|
7
|
952
|
|
8
|
854
|
|
8
|
915
|
|
8
|
976
|
|
9
|
861
|
|
9
|
922.5
|
|
9
|
984
|
|
10
|
840
|
|
10
|
900
|
|
10
|
960
|
|
11
|
847
|
|
11
|
907.5
|
|
11
|
968
|
|
12
|
833
|
|
12
|
892.5
|
|
12
|
952
|
|
13
|
826
|
|
13
|
885
|
|
13
|
944
|
|
14
|
861
|
|
14
|
922.5
|
|
14
|
984
|
|
15
|
840
|
|
15
|
900
|
|
15
|
960
|
|
16
|
847
|
|
16
|
907.5
|
|
16
|
968
|
|
17
|
833
|
|
17
|
892.5
|
|
17
|
952
|
|
18
|
826
|
|
18
|
885
|
|
18
|
944
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. For your given data set of ungrouped data calculate the mean, range and standard deviation.
2. From the information you correlated:
a. Identify the relationship between the normal curve and the mean values
b. Select and group the data based on variable and attribute inspection methodology.
3. Using appropriate control charts, calculate the limits you would use
4. Construct an appropriate control chart for variable inspection methodology, showing rejects per unit and percentage defects per batch
5. Develop and implement an inspection control program for your data.Identify:
a. The inspection methodology used
b. The control charts
c. Frequency of inspection and or the batch size
d. Method of implementation