Consider the variation on the blum blum shub generator mod


1. Digital Signature and Programming

Write a java program to solve the following questions. Submit your code along with outputs. Let

e = n = 12801889219865986943874426789172837719929575398179139903346 0102259322494388756606728373121043154809790249663472677206622549 2472049090344014040948783013844255405121563940725271958261549105 6895127372123401970340184655821416714383833567438594837829393436 445708175846840391647287652219983832401360628720836954408208209

be an RSA public modulus. Note the public key e = n.

A. Without factoring n, provide a message m together with its RSA signature σ such that m ends with 2017 in base 10. Show that σ is a valid signature.

B. Without factoring n, check that the exponent

e' = 999858280201913599008802868696830357098395840037288384624455 77041064925905995005216889007572898641811594513334409291762876864 91104489407462355371113514648093

is also valid to verify signed messages. Show at least 5 examples.

2. Pseudorandom

Consider the variation on the Blum Blum Shub generator (mod n = pq)

BBS*(s0){

L:=number of bits in n.

for I to L{

si = s2i-1 mod n

}

Return s1||s2||· · ·  ||sL

}

A. Show how to distinguish the output of BBS* from a truly random source, even without knowing L or n.

B. Suppose your are given the output of BBS*. Show that how could can you use your method to find L, n and s0.

Request for Solution File

Ask an Expert for Answer!!
JAVA Programming: Consider the variation on the blum blum shub generator mod
Reference No:- TGS02222206

Expected delivery within 24 Hours