Solve the following problem:
Starting from the prior distribution
β|σ2,X∼Nk+1(β¯, nσ2(XTX)-1):
a. Show that
Xβ|σ2,X∼Nn(Xβ¯, nσ2(XTX)-1XT):
and that
y|σ2,X∼Nn(Xβ¯, nσ2(In+nX(XTX)-1XT).
b. Show that integrating in σ2 with π(σ2)=1/σ2 yields the marginal distribution of y above.
c. Compute the value of the marginal density of y for the swiss dataset.