Calculate the mean, variance & standard deviation of the number of heads in a simultaneous toss of three coins. 
  SOLUTION: 
 Let X denotes the number of heads in a simultaneous toss of three coins. Then, X  can take values 0,1,2,3. 
NOW,        
             P(X=0)=P(TTT)=1/8 
            P(X=1)=P(HTT or TTH or THT)=3/8 
            P(X=2)=P(HHT or THH or HTH)=3/8 And,
            P(X=3)=P(HHH)=1/8 
Thus, the probability distribution of X is given by 
    X:  0     1      2     3  
P(X):1/8  3/8  3/8  1/8             
                     Computation of mean and variance
| xi | 0 | 1 | 2 | 3 |   | 
| pi | 1/8 | 3/8 | 3/8 | 1/8 |   | 
               
             Pi xi :  0          3/8          6/8        3/8          ∑pixi=3/2 
           Pi xi²:       0         3/8          12/8        9/8        ∑pixi=3 
 
WE HAVE,
              -
              X= MEAN = ∑ Pi xi  = 3/2 
         Var(X)= ∑ Pi xi ² – (∑pi xi)² = 3 – (3/2)² = ¾ 
      Standard deviation = √3/2 = 0.87