Before you begin select the links below to review some


Assignment

Encryption uses cryptographic algorithms to obfuscate data. These complex algorithms transform data from human readable plaintext into encrypted cipher text. Encryption uses the principles of substitution and permutation to ensure that data is transformed in a non-deterministic manner by allowing the user to select the password or a key to encrypt a message. The recipient must know the key in order to decrypt the message, translating it back into the human readable plaintext.

There are six steps that will lead you through this project. It is recommended that you work on this project during Weeks 9 and 10. After beginning with the workplace scenario, continue to Step 1: "IT Systems Architecture."

When you submit your project, your work will be evaluated using the competencies listed below. You can use the list below to self-check your work before submission.

• 1.5: Use sentence structure appropriate to the task, message and audience.
• 1.6: Follow conventions of Standard Written English.
• 1.7: Create neat and professional-looking documents appropriate for the project.
• 2.1: Identify and clearly explain the issue, question, problem under consideration.
• 2.2: Locate and access sufficient information to investigate the issue or problem.
• 2.3: Evaluate the information in logical manner to determine value and relevance.
• 2.4: Consider and analyze information in context to the issue or problem.
• 3.2: Employ quantitative and data analysis techniques to arrive at optimal solution.
• 5.1: Knowledge of procedures, tools, and applications used to keep data or information secure, including public key infrastructure, point-to-point encryption, and smart cards.

Step 1: IT Systems Architecture

You are a senior-level employee and you must tailor your deliverables to suit your audience: the leadership of the organization. You may choose to use a fictitious organization, or model your organization on an existing organization, including proper citations.

Leadership is not familiar with the architecture of the IT systems, nor are they familiar with the types of threats that are likely or the security mechanisms in place to ward off those threats. You will provide this information in tabular format.

Before you begin, select the links below to review some material on information security. These resources will help you complete the network security and vulnerability threat table.

• LAN security
• Availability

Now you're ready to create your table. Include and define the following components of security in the architecture of your organization, and explain if threats to these components are likely, or unlikely:

• LAN security
• identity management
• physical security
• personal security
• availability
• privacy

Next, review the different types of cyberattacks described in the following resource: cyberattacks. As you're reading take note of which attacks are most likely to affect your organization. Then list the security defenses you employ in your organization to mitigate these types of attacks. Include this information in your Network Security and Vulnerability Threat Table.

Step 2: Plan of Protection

Note: You will utilize the tools in Workspace for this step. If you need help outside the classroom, you can register for the CLAB 699 Cyber Computing Lab Assistance (go to the Discussions List for registration information). Primary lab assistance is available from a team of lab assistants. Lab assistants are professionals and are trained to help you.

Click here to access the Project 5 Workspace Exercise Instructions. Explore the tutorials and user guides to learn more about the tools you will use.

You will have to provide the leadership of your organization with your plan for protecting identity, access, authorization and nonrepudiation of information transmission, storage, and usage.

You read up on nonrepudiation measures found in this resource: nonrepudiation. Then weigh several options for a cryptographic program for the organization's information assets, which include files, networks, databases, and email.

Next, select the following link to enter Workspace. Complete "Cryptography Lab Part A: Steganography" and "Cryptography Lab Part B: Encryption / Decryption." Then, in your report, describe the cryptographic mechanisms available to your organization, and describe the benefits and risks of each. Also describe your file encryption tools, and provide the methods and results of encrypting files in your organization. Include this information in your deliverable to leadership.

Step 3: Data Hiding Technologies

You will describe to your organization the various cryptographic means of protecting its assets. Select the links below to review encryption techniques and encryption technologies, then provide your organization with a brief overview of each.

Encryption Technologies

1. Shift / Caesar cipher
2. Polyalphabetic cipher
3. One time pad cipher/Vernam cipher/perfect cipher
4. Block ciphers
5. triple DES
6. RSA
7. Advanced Encryption Standard (AES)
8. Symmetric encryption
9. Text block coding

Data Hiding Technologies

1. Information hiding and steganography
2. Digital watermarking
3. Masks and filtering

These descriptions will be included in the network security vulnerability and threat table for leadership.

Step 4: Creating the Network Security Vulnerability and Threat Table

Using the information you've gathered from the previous steps, prepare the network security vulnerability and threat table, in which you outline the following:

• security architecture of the organization
• the cryptographic means of protecting the assets of the organization
• the types of known attacks against those types of protections
• means to ward off the attacks

Create your Network Security Vulnerability and Threat Table, and include it in your submission to the organization. Please refer to this threat table template for guidance on creating this document.

Step 5: Access Control Based on Smart Card Strategies

Smart cards use encryption chips to identify the user, their identity, role, and sometimes use their personal identifiable information (PII). Two examples of smart cards are the federal government's use of common access cards (CACs), and the financial sector's use of encryption chips in credit cards.

You have completed your threat table, and you've decided that you want to modernize the access control methods for your organization. To that end, you read the following resources to gather some background information on access control and the various encryption schemas associated with the Common Access Card (CAC):

• Access control
• Common access Card (CAC)

You plan to deploy CAC to the company and you are tasked with devising that CAC deployment strategy, which includes the cryptographic solutions used with the CAC.

In the Common Access Card Deployment Strategy final deliverable, describe how identity management would be a part of your overall security program and your CAC deployment plan:

Create your Common Access Card Deployment Strategy and include it in your submission to the organization.

Step 6: The Email Security Strategy

After completing the CAC, your next step is to build the Secure Email Strategy for the organization. You will present this tool to your leadership.

Provide an overview of the types of public-private key pairing, and show how this provides authentication and nonrepudiation. You will also add hashing, and describe how this added security benefit ensures the integrity of messaging.

Begin preparing your strategy by reviewing the following resources that will aid you in becoming well informed on encryption technologies for e-mail:

• Public Key Infrastructure (PKI)
• iOS encryption
• Blackberry encryption

Then start developing your strategy. Define these strong encryption technologies as general principles in secure email:

Pretty Good Policy (PGP algorithm)

• GNU Privacy Guard (GPG)
• Public Key Infrastructure (PKI)
• Digital signature
• Mobile device encryption (e.g., iOS encryption and Blackberry encryption)

In your report, also consider how the use of smart card readers tied to computer systems might be beneficial in the future enhancements to system and data access protection. This may help you define long-term solutions for your leadership.

Leadership does not know the costs and technical complexity of these email encryption strategies. To further their understanding, compare the complexities of each in relation to the security benefits, and then make a recommendation and a deployment plan.

The deliverables for this project are as follows:

1. Create a single report in Word document format. This report should be about 10 pages long, double-spaced, with citations in APA format. Page count does not include diagrams or tables. The report must cover the following:

o network security and threat table
o Common Access Card deployment strategy
o e-mail security strategy

2. In a Word document, share your lab experience and provide screenshots to demonstrate that you performed the lab.

Request for Solution File

Ask an Expert for Answer!!
Management Information Sys: Before you begin select the links below to review some
Reference No:- TGS02192813

Expected delivery within 24 Hours