Tracking a ballistic missile with normal distribution measurement error
The trajectory [meters, seconds]:
X[t] = -196000 + 980t ; Vx[t] = 980; AccX[t] = 0;
Y[t] = 0; Vy[t] = 0; AccY[t] = 0;
Z[t] = 980t - ((9.8*(t^2))/2); Vz(t) = 980 - 9.8t; AccZ(t) = -9.8; Use Kalman filter(s) to track the missile.
The mean of the measurement error is zero. The standard deviation magnitude of the measurement error in all directions is (0.005)(Range).
1) Plot the Truth trajectory: Z vs X, Z vs t, X vs t, standard deviation =(0.005)(Range) vs t
2) Plot the Kalman filtered trajectory & Truth trajectory: Z vs X, Z vs t, X vs t, use 3 different values for the magnitude of the process noise ssa, 100 ssa, ssa/100.
3) Estimate the value of ssa that gives smallest tracking error.