An implementation of a queue Q using two stacks S1 S2 is given below
void insert(Q,x){
PUSH(S1,x);
}
void delete (Q)
{
if (stack -empty (S2)) then
if(stack -empty (S1))
then
{
print ("Q is empty");
return;
}
else while (!(stack-empty)(S1))){
x= pop(S1);
push(S2,x);
}
x=pop(S2);
}
Let n insert and M(«n) delete operations be performed in an arbitrary order on an empty queue Q. let x and y be the number of push and pop operations performed respectively in the process, true equation for all m and n?