amultiply x by x7 x5 x3 1 in gf28mod x8


A.Multiply x by x7 + x5 + x3 + 1 in GF(28)mod x8+ x4+x3+x+1.

B. i) Verify that x6 + x is the inverse of x5 + x4+x2+ x +1in GF (28) mod x8+ x4+x3+x+1.

ii) Using the given matrices A and B for the affine transformation AY+ B, (i), and the input byte 0011 0111(37 in hex), compute the corresponding entry in the RijndaelS-box.

935_Rijndael Algorithm.png

C.  Apply the Shift Row transformation of the Rijndael Algorithm to the following state:

87

F2

4D

97

EC

6E

4C

90

4A

C3

46

E7

8C

D8

95

A6

D.  Use the Blum-Blum-Shub pseudorandom number generator to create a sequence of 6 bits, using p = 11, q = 13 and s = 3 (seed= x0).                     

E. Use the Chinese Remainder Theorem to solve for x if: 

x ≡ 2 (mod 5),  x ≡ 3 (mod 13), and   x ≡ 1 (mod 7).                            

F. Given p = 17, q = 11, e = 7, Using the RSA algorithm,

a) Find n and d.  Find the public key and private key.

b) Encrypt m = 6.

c)  Decrypt c = 2.

G.  Compute 6666 mod 11 using Fermat's Little Theorem.

H.  Compute 5123 mod 13 using Euler's Theorem.

I.  Use Fermat's Test for primality to test the following numbers:

a) n = 31

b) n = 187

J.  Complete the following table of values of 2x mod 21:

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 

2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solve for x: 

a)    2x ≡ 8 mod 21     L2(8) =

b) 2x ≡ 11 mod 21   L2(11) =

K. a) Is 2 a primitive root of 7?Explain.

x

 

 

 

 

 

 

2x

 

 

 

 

 

 

b) Is 3 a primitive root of 7? Explain.

x

 

 

 

 

 

 

3x

 

 

 

 

 

 

Solution Preview :

Prepared by a verified Expert
Computer Networking: amultiply x by x7 x5 x3 1 in gf28mod x8
Reference No:- TGS0442316

Now Priced at $25 (50% Discount)

Recommended (94%)

Rated (4.6/5)