1. Write the expression in simplest exponential form.
2r • 2r • 2r • 2r • 2r • 2r
A) 6•(2r)
B) (2r)6
C) 2r6
D) 12r6
3. Simplify the expression.
(3x2y2)3(5xy3)
A) 15x7y9
B) 135x6y9
C) 135x7y9
D) 15x7y5
4. Use the properties of exponents to simplify the expression.
(2 *190)3
A) 2
B) 13,718
C) 54,872
D) 8
6. Use the properties of exponents to simplify the expression.
m–2 • m9
A) m11
B) m–18
C) m7
D) 7m
7. Express the number 0.00000259 in scientific notation.
A) 2.59 * 106
B) 2.59 * 10-6
C) 25.9 * 10-6
D) 2.59 * 10-5
8. Peform the indicated calculations. Write your result in scientific notation.
(–2.5 * 108)(7 *109)
A) –17.5* 1017
B) –1.75 * 1072
C) –1.75 * 1018
D) –11.75 * 1016
9. True or False: A polynomial can have more than four terms.
10. True or False: A polynomial with exactly one term is called a monomial.
11. Determine the degree of the polynomial 3x2 + 9x3 –5.
A) 9
B) 3
C) 2
D) 1
12. Which one of the following polynomials is written in descending order?
A) x10 + 2x5 + 18x4 –12x3 + x+ 9
B) 5 + 4x + 3x2 + 2x3 + x4
C) x22 + 2x14 + 18x5 –12x3 + 1+ 9x
D) 14x2 + 12x4 + 10x5 + 5x3 + 2x+ 1
13. Add 5x – 4 and –13x + 10.
A) –8x + 5
B) 18x + 14
C) –8x + 6
D) 18x + 15
14. Add 5x3 – 3x2 + 5 and 10x2 – 11 using the vertical method. Write the resulting polynomial in descending order.
A) 5x3 + 7x2 – 6
B) 5x3 – 7x2 – 6
C) 5x3 – 7x2 + 6
D) 5x3 + 7x2 + 6
15. Subtract 5x – 4 from 9x + 12.
A) 4x + 8
B) 4x + 16
C) –4x + 16
D) –4x + 8
16. Multiply 6a2 and 3a6.
A) 18a12
B) 9a8
C) 18a8
D) 36a12
17. Multiply x2 – 5xy + 4y2 by 5xy2.
A) 5x3y2 – 25x2y3 + 20xy2
B) 5x3y2 + 25x2y3 + 20xy4
C) 5x3y2 – 25x2y2 + 20xy2
D) 5x3y2 – 25x2y3 + 20xy4
18. Multiply 8y –1 by 2y + 5.
A) 16y2 – 38y - 5
B) 16y2 + 42y- 5
C) 16y2 + 38y - 5
D) 16y2 + 38y + 5
19. Multiply 8x + 2 by 5x + 4.
A) 40x2 + 26x + 8
B) 40x2 + 13x + 8
C) 40x2 + 42x + 8
D) 40x2 + 36x + 8
20. Find (6x + 3)2.
A) 36x2 + 36x + 9
B) 36x2 + 18x + 9
C) 36x2+ 9
D) 6x2 + 36x + 18
21. Find (y – z)(y + z).
A) y2 + z2
B) y2 + 2yz – z2
C) y2 – z2
D) y2 + yz – z2
22. Multiply.
(x 2)(x2 + 2x + 4)
A) x3 + x2 - 27
B) x3 - 8
C) x3 + 4x2 + 8x + 8
D) x3 – 4x2 + 8x – 8
23. Divide 4b6 + 24b4 – 8b2 by –2b2
A) –2b3 – 12b2 + 4b
B) –b4 – 12b2 + 4b
C) –2b4 – 12b2 + 4
D) 2b4 + 12b2 – 4