A spherical capacitor contains a solid spherical conductor of radius 0.5mm with a charge of 7.4 micro coulombs, surrounded by a dielectric material with er = 1.8 out to a radius of 1.2mm, then an outer spherical non-conducting shell, with variable charge per unit volume p = 5r, with outer radius 2.0 mm. Determine the electric field everywhere. (Remember that in a linear dielectric material you can work out the equations as though they are in a vacuum and then replace e0 by e0er.)
I know that the electric field for a dielectric is e = Q all over 4 pi k epsilon zero r^2. I also know that the electric field for the innerest conductor can be found using E = 1 over 4 pi epsilon zero time Q over r^2. Using this equation I got 3.25 x 10 ^ -9. However I do not know how to solve the outer most shell given with the charge per volume value. And for my dielectric electric field formula how do I get the er value of 1.8 that was given in the problem into the equation?