A letnbsptnnbsp mint gtnbsp0nbspxt n gtnbsp1 that


Let {X{t),t > 0} be a pure birth process such that λj = jλ, for = 0 , 1 , . . . , where λ > 0. We suppose that X(0) = 1.

(a) Let Tn := min{t > 0: X{t) = n (> 1)}. That is, Tn is the time needed for the number of individuals in the population to be equal to n. Show that the probability density function of Tn is given by

(b) Let N(t) be the number of descendants of the ancestor of the population at time t, so that N(t) = X(t) - 1. Suppose that the random variable τ has an exponential distribution with parameter μ. Show that

Request for Solution File

Ask an Expert for Answer!!
Basic Statistics: A letnbsptnnbsp mint gtnbsp0nbspxt n gtnbsp1 that
Reference No:- TGS01515432

Expected delivery within 24 Hours