1 considernbspr3with two orthonormal bases the canonical


1. Consider R3with two orthonormal bases: the canonical basis e=(e1,e2,e3) and the basis f=(f1,f2,f3), where

f1=(1,1,1)/(3^(1/2))  ,f2=(1,-2,1)/(6^(1/2))  ,f3=(1,0,-1)/(2^(1/2))

Find the canonical matrix, A, of the linear map T∈?(R3) with eigenvectors f1,f2,f3 and eigenvalues 1, 1/2, -1/2, respectively.

2. For  the following matrices, verify that A is Hermitian by showing that A=A∗ ,?nd a unitary matrix U such that U-1AU is a diagonal matrix, and compute exp(A).

 A =  5      0            0

        0     -1         -1 + i

        0   -1 - i        0

3. For the following matrices, either ?nd a matrix P (not necessarily unitary) such that P-1AP is a diagonal matrix, or show why no such matrix exists.

A =5    0     0

      1    5     0

      0    1     5

4.Let V be a finite-dimensional vector space over F, and suppose that S, T ∈ L(V ) are positive operators on V . Prove that S + T is also a positive operator on T.

Request for Solution File

Ask an Expert for Answer!!
Mathematics: 1 considernbspr3with two orthonormal bases the canonical
Reference No:- TGS01187923

Expected delivery within 24 Hours