α-Decay:
α-particles are stable and show definite range when they transverse a medium. For α decay to be possible there is minimum energy requirement.
X (A, Z) → Y(A-Y, A-Z)
AXX→A-4Z-2Y + 4zα + Qα
Where Qα = Δmc2
As mass defect between mi and mf (initial and final masses).
mi = [M(A,Z)] = ZMP + NMN - EBi
mf = [M(A-4, Z-2)] = (Z-2)MP + (N-2)MN - EBf
Mα = [M(4,2)] = 2MP + 2MN - EBα
Qα = mi - mf - mα
= -EBi + EBf + EBα
= EBα + EBf - EBi
And EBα = 28.3MeV
Qα = (28.3 + ΔEB)MeV
From semi-empirical formula
Binding energy = E(Z, A)
Thus, disintegration energy of nuclei Qα or total energy released in α-decay is provided as
Qα = 28.3 + (2E/2A)2ΔA + (2E/2Z)AΔZ
α emission is not possible if Qα < O that is Qα should be > 0
It has been found that Qα > O for nuclide for which Z > 82
Assume, mass of parents = MP.
Mass of daughter= Md
Mass of α particle= Mα
Velocity of α particle when emitted = Vα
Velocity of record of daughter = Vd
From conservation of momentum
MαVα = MdVd
Total energy = Qα = final kinetic energy - initial kinetic energy
Qα = 1/2MαVα2 + 1/2MdVd2
Vd = MαVα/Md
By substituting
Qα = 1/2MαVα2 + 1/2Md[MαVα/Md]2
Qα = 1/2MαVα2 + 1/2Mα2Vα2/Md
= 1/2MαVα2[1 + Mα/Md]
For small approximation
Mα/Md ≈ 4/(A-4)
Qα = 1/2MαVα2[1 + 4/(A - 4)]
Qα = Eα[4/A-4 + 1]
= Eα[4+A-4/A-4]
Qα = Eα[A/A-4]
As A is large
Qα ≈ Eα
This signifies most of the energy released is carried away by α-particle.
Range of α -Particle:
α - particles are closely ionizing and lose their energies in rapid succession in air or any medium. Number of ions pairs generated per unit length is known as specific ionization (S.I). Mean distance travelled by α -particle before absorption is known as range.
Intersection of α -particle with atoms or molecules of the medium are entirely statistical and thus they don't have same range as in air.
Range, R = 318E3/2
Empirical relation between range of α-particle and disintegration constant is provided by Geiger Nuttall Law
logλ = AlogR + B
α-decay paradox:
As α-particle is tightly bound entity we can declare it pre-exists in nucleus before its emission. For α-particle to come out or go in nucleus it implies it should have energy in neighborhood of potential well of nucleus.
Energy of α-particle generally ranges between 4-8Mev that is far less than what is needed to overcome potential barrier. Naturally it is not possible to understand this as it has no chance of leaving nucleus.
In 1928, George Gamow considered α -particles as matter wave. This signifies that α-particle as finite probability of penetrating wall of thickness where it suffers series of collisions per second.
β Decay:
Decay procedure in which charge of nucleus changes without change in number of nucleons. There are three kinds of β decay:
i) β- decay: e.g.
AZX→AZ+1Y + 0-1β + v ‾
125B→126C + β + v ‾
ii) β+ decay: e.g.
AZX→AZ-1Y + 0-1β + v ‾
127B→126C + β + v ‾
iii) Electron capture or k-capture: Procedure through which nucleus captures orbital electron, most frequently from closest shell to convert a proton to neutron.
AZX+ 0-1e → AZ-1Y + v ‾
74Be + 0-1e → 73li + v ‾
Energetic of β- decay:
AZX→AZ+1Y + β- + v ‾
In terms of nuclear masses:
Q/C2 = Mn(AZX) - Mn(AZ+1Y)-Me
And in terms of atomic masses:
Q/C2 = Ma(AZX) -Ma(Az+1Y)
For β- to be possible: Q>0
β+ Decay:
AZX→AZ-1Y + β-1 + v ‾
Nuclear masses:
Q/C2 = Mn(AZX) - Mn(Az-1Y)-Me
Atomic masses:
Q/C2 = Ma(AZX) - Ma(Az-1Y) - 2Me
Electron capture:
Q/C2 = Ma(AZX) - Ma(Az-1Y)
β-spectrum:
i) Unlike α-rays, spectrum of β-rays occurs continuous that is electrons emitted have different kinetic energies.
ii) It is also an energy transition between two definite energy states.
iii) Mono-energetic β-rays forming line spectrum are expected.
Most of electrons are emitted with only 1/3 of energy. Thus, this makes one to imagine where remaining of 2/3 of maximum energy would have gone to.
As measurements like momentum and angular momentum are not conserved. These recommend that third particle should exist that always accompany β-decay. It was detected to be neutrino (μ).
Neutrino (μ):
1. Carries away energy equal to energy different between observed energy for β-decay and maximum energy of continuous spectrum.
2. To maintain principle of conservation of energy, neutrino was given following properties
i). 0 charge ii).0 mass iii). Moves with speed of light iv). Spin of 1/2(h/2π)
3. Antiparticle of neutrino, (antineutrino) has given properties
i) 0 charge ii) 0 mass iii) Spin of 1/2(h/2π)
γ - Decay:
When the nucleus is in excited gamma rays are emitted and it is brought to ground state. Nucleus is generally left in excited state after emitting either α or β rays then it is de-excitated by emitting gamma rays. Gamma rays are emitted with discrete and definite energies that is indication of nuclear structure. Energy carried away is ΔE = hf
When mean life time of excited nucleus is >10-6 sec., daughter nucleus is said to show nuclear isomerism.
γk and γ are nuclear isomers and are chemically and physically the same. Difference is that γk is more energetic than γ and it finally emits energy as γ ray and returns to ground state. At times, instead of γ ray being emitted, this excess energy of excited nucleus may be transferred to the extra nuclear electron to get it from shell (generally K or L shell). This procedure is known as internal conversion.
Kinetic energy of converted electron is
Ke = ΔE - Be
Be = binding energy of electron
ΔE = Ei - Ef
Usually, due to internal conversion, yield of γ rays in particular decay <100%. Some spikes observed in continuous β- spectrum is generally because of internal conversion process.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Structure and Function of Plant Cells tutorial all along with the key concepts of Membrane System, Organelles for Energy Conversion, Cell Movement, Chloroplasts, Mitochondria, Endoplasmic Reticulum, Dictyosomes, Vacuoles and Micro Bodies
tutorsglobe.com dna-segmenting or fragmenting assignment help-homework help by online genetic engineering tutors
www.tutorsglobe.com offers lines and angles homework help, lines and angles assignment help, online tutoring assistance, geometry mathematics solutions by online qualified math tutor's help.
tutorsglobe.com processing of endogenous antigens assignment help-homework help by online carrier tutors
Energy effects in Chemical reactions tutorial all along with the key concepts of Procedure of energy effects, Results of energy effects
Explore the brilliance of best International Economics Assignment Help instantly to secure top grades at budget-friendly prices.
tutorsglobe.com structures of interhalogen compounds assignment help-homework help by online interhalogen compounds tutors
Interpretation of a Mass Spectrum tutorial all along with the key concepts of Rules employed in the Interpretation of Mass Spectra, Mass Spectrum of Toluene and Examples of Mass Spectra Interpretation
tutorsglobe.com absorption of fats assignment help-homework help by online digestion of lipids tutors
www.tutorsglobe.com offers Needs of Requirement Analysis homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Theory and lecture notes of Production Function all along with the key concepts of production function, building blocks of the Flexible-Price Model, Keynesian assumption, classical flexible-price assumption. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Production Function.
primary users for financial accounting is external and internal for management accounting. primary organizational focus is whole for finalcial accounting and segmented for management accounting.
tutorsglobe.com criticism of marginal theory assignment help-homework help by online marginal productivity theory of distribution tutors
www.tutorsglobe.com offers rad model homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Electronic Instruments tutorial all along with the key concepts of Cathode ray oscilloscope, Cathode Ray Tube, Basic Oscilloscope, Input to Amplifier of Vertical Plate, Input to Amplifier of Horizontal Plate, Signal generators, Function generator, Pulse Generators, Differential-Amplifier type of EVM
1959818
Questions Asked
3689
Tutors
1455095
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!