Concept of Two-Body Problem:
In practice, there are several investigations which involve more than two bodies. For example, let a hypothetical satellite placed in orbit between the earth and mars. The earth, the sun and mars apply forces on satellite. Therefore, four bodies (Earth, Sun, Mars and satellite itself) are engaged. This is no longer a two-body problem. It is a four-body problem. Luckily, it is frequently allowable to split many-body problem in numerous two-body problems. This technique makes it feasible for approximate values of parameters involved to be computed with relative ease. For example, four-body problem given above can be split in 3 different two-body problems comprising of (a) two body problem involving the earth and the satellite only (b) two-body problem involving sun and the satellite only (c) a two-body problem involving mars and the satellite only.
When satellite is under main attraction of the earth, the two-body problem involving the earth and the satellite becomes about valid. Similar statement holds for each of the remaining two-body problems. Though, in carry-over region where earth and sun attract the satellite with the similar order of magnitude of force, three-body treatment becomes essential. Similar assertion also holds in carry-over region where mars and sun attract the satellite with about the same force. Luckily, these carry-over regions constitute only small fraction of total journey of satellite in its orbit. As a result, much calculation time is saved using this technique.
Solution to Two-Body Problem:
Let two bodies of masses m1 and m2 separated by the linear displacement r→. Newton's second law of motion defines that
F→ = d(mv→)/dt or F→ = md2r→/dt2 or md2r→/dt2 = ∑i=1kF→i
Force of attraction, F1→, on m1 is directed along vector r→. Force of attraction, F2, on m2 is in opposite direction.
By Newton's third law,
F1→ = -F2→
Also, by Newton's law of gravitation,
F1→ = Gm1m2/r2(r→/r)
Again
F2→ = -G(m1m2/r2)(r→/r)
Let vectors r1→ and r2→ be directed from some fixed reference point O to particles of masses m1 and m2, respectively.
Now,
F→ = m(d2r1→/dt2)
so that
F1→ = m1(d2r→1/dt2) and F2→ = m2(d2r→2/dt2)
Equation (1) can then be rewritten as
m1(d2r1→/dt2) = (Gm1m2/r2)(r→/r)
Equation (2) can also be rewritten as
m2(d2r2→/dt2) = (Gm1m2/r2)(r→/r)
By Adding, we get
m1(d2r2→/dt2) + m2((d2r2→/dt2)) = 0
by definition, the centre-of-mass C of the system of masses m1 and m2 is given by MR→ = m1r1→ + m2r2→ where M = m1 + m2 and R→ is the position vector of C Hence, by Eq.(8), you get
M(dR→/dt) = a→ Also by equation we get
MR→ = a→t + b→
These two relations show that centre of mass of the system moves with constant velocity (i.e., with constant speed in straight line).
Angular Momentum Integral:
Equations may be written as
d2r→/dt2 = Gm2(r→/r3) and d2r2→/dt2 = -Gm1(r→/r3) respectively
After solving equation gives
d2(r→1 - r2→)/dt2 = G(m1 + m2)(r→/r3) But from figure
r1→ - r2 = -r→ Hence d2r→/dt2 + μr→/r3 = 0
where μ = G(m1 + m2)
Taking the vector product of r→ with Equation you obtain
r→xd2r→/dt2 + μr→/r3 x r→ = 0
i.e.
Integrating, we have r→ x dr→/dt = h→ where h→ is constant vector.
Equation is angular momentum integral. Now, as h→ is constant, it should point in one direction or all values of t. Therefore, motion of one body about other should lie in plane defined by th direction of h.
Mathematical form of Kepler's Second Law:
If polar coordinates r and θ are taken in this plane velocity component along radius vector joining m1 to m2 is r^. Also, perpendicular component of radius vector is rθ^, where dot replaces d/dt.
By defining I→ and J→ as the unit vectors along and perpendicular to the radius vector, the resultant velocity r→^ becomes
r→^ = I→r. + J→rθ.
Therefore, using Equations we can easily verify each of the given steps:
r→ x dr→/dt = h→
r→ x r→^ = h→
r→ x(I→r. + J→rθ.) = h→
I→rx(I→r. + J→rθ.) = h→
(I→rxI→)r.+(I→r x J→)rθ. = h→
0 + (K→r)rθ. = h→
Thus K→r2θ. = h→
We may thus write:
r2θ. = h
Here constant h is twice the rate at which radius vector defines the area. This is mathematical form of Kepler's second law. For the circular orbit, rate of change of area may, of course, be evaluated as follows:
A = πr2
dA/dt = dA/dr x dr/dt
2πrdr/dt => 2πrr.
Energy Conservation Equation of System:
If scalar product of r→. with equation is now taken, we get
r→..d2r→/dt2 + μr→..r→/r3 = 0 i.e. r→..r→.. + μ/r3 r→..r→ = 0
This may be integrated to provide
1/2r→..r→.-μ/r = c
Here C is a constant v.
I.e., 1/2v2 - μ/r = c
Here v is velocity.
Equation is energy conservation equation of the system. Quantity C isn't the total energy of system. Though, quantity 1/2v2 is associated to kinetic energy whereas quantity -μ/r is associated to potential energy of the system.
Satellite Obits in Two-Body System:
The components of acceleration along and perpendicular to radius vector are
r.. - rθ.2 and 1/2(d/dt)(r2θ.) respectively. Equation can be written as:
I→(r.. - rθ.2) + J→[(1/r)(d/dt)(r2θ.)] + (μ/r3)(I→r) = 0
Equating coefficients of vectors, we get:
r.. - rθ.2 = -μ/r2 and (1/r)(d/dt)(rθ.2) = 0
Integration of equation provides angular momentum integral
Substituting u = 1/r and eliminating time t between equations we get:
d2u/dt2 + u = μ/h2
General solution of equation is as follows:
u = μ/h2 + Acos(θ-ω)
Here A and ω are two constants of integration. Reintroducing r in equation it becomes:
1/r = μ/h2 + Acos(θ-ω) or
r = [1/(μ/h2 + Acos(θ-ω))] or
r = [(h2/μ)/1-(Ah2/μ)cos(θ-ω)]
But, generally, polar equation of the conic section may be written as:
r = P/(1 + ecos(θ-ω)) so that p = h2/μ and e = Ah2/μ
Therefore, solution of two-body problem is a conic section. It comprises Kepler's first law as special case. Particularly, orbit of a satellite about earth is categorized by value of eccentricity e. Four cases to be remembered are:
i) For 0 < e < 1, orbit is ellipse.
ii) For e = 1, orbit is parabola.
iii) For e >1, orbit is hyperbola.
iv) For e = 0, orbit is circle
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
We possess qualified Operation Management Assignment Help tutors, who all are capable to fetch you top-notch grades with ease.
theory and lecture notes of testing of means all along with the key concepts of testing of means, population standard deviation known and population standard deviation unknown. tutorsglobe offers homework help, assignment help and tutor’s assistance on testing of means.
Microscopic Properties of Dielectrics tutorial all along with the key concepts of electric fields in cavities of a Dielectric, Clausius-Massotti Equation, Polarization in a Gas, Polarisability and Refractive Index and Dielectric Capacitor in our practical life
tutorsglobe.com the brain assignment help-homework help by online co-ordination systems tutors
theory and lecture notes of static characteristics iv, all along with the key concepts of drive capability, fan-out, assignment help and homework help. tutorsglobe offers homework help, assignment help and tutor’s assistance on static characteristics iv.
Nuclear Structure tutorial all along with the key concepts of nuclides with same Isotopes, nuclides with same Isobars, nuclides with same Isotones, uncertainty in momentum of electron, Excess mass and packing fraction, Nucleus, Nuclear Binding Energy and Separation Energy
Standard enthalpy of formation tutorial all along with the key concepts of Concepts of Standard Enthalpy of Formation, Calculating the Standard Enthalpy of Reaction
tutorsglobe.com activation of adaptive immunity assignment help-homework help by online acquired immunity tutors
tutorsglobe.com non-biological fixation assignment help-homework help by online nitrogen metabolism tutors
tutorsglobe.com catabolism of proteins assignment help-homework help by online energy and enzymes tutors
Theory and lecture notes of Dynamic Characteristics III, all along with the key concepts of Inverter Fall Time, Storage Time and Rise-Time. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Dynamic Characteristics III.
Recording the double aspect of a credit sale will include increasing sales revenue and increasing trade receivables through the amount of the revenue from the credit sale.
www.tutorsglobe.com offers Gantt Task and Bonus System homework help, assignment help, case study, writing homework help, online tutoring assistance by accounting tutors.
tutorsglobe.com promoting development in private sector assignment help-homework help by online objectives of fiscal policy tutors
www.tutorsglobe.com offers preparation of 1º amines homework help, preparation of 1º amines assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
1963829
Questions Asked
3689
Tutors
1470232
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!