Introduction to Orthogonal functions:
The Orthogonal functions play a significant role in the Quantum mechanics. This is because as they afford us a set of functions, which don't mix, just the way you could resolve a vector in two dimensions in the x and y directions, correspondingly, by the unit vectors i and j. The dot product of the two unit vectors gives you zero. We would as well like to resolve our vectors in some directions. Therefore, you require knowing regarding orthogonal and Orthonormality functions. The orthonormal functions would make the possible states you can determine a system. You know such states must not mix.
Definitions:
1) We state v1 and v2 in a vector space 'V' are orthogonal if their inner product is zero, that is, (v1, v2) = 0.
2) Assume that there exists a linearly independent set {Φi}i=1 n , that is, {Φ1, Φ2, ...., Φn} , in such a way that (Φi, Φj) = 0, i ≠ j, then, {Φi}i=1 n is the orthogonal set.
3) If in addition to condition (2) above, (Φi, Φj) = 1 then, {Φi}i=1 n is the orthonormal set.
For an orthonormal set, thus, we can write (Φi, Φj) = δij, where δij is the Kronecker delta, equivalent to 0 if i ≠ j and equivalent to 1 if i = j.
As we are familiar that, if any vector in the vector space, 'V', can be written as the linear combination
v = a1Φ1 + a2Φ2 + .... + anΦn = i=1Σn aiΦi
Then we state that the space is spanned via the complete orthonormal basis {Φi}i=1 n, where (Φm, Φn) = δmn
When {Φi}i=1 n is the orthonormal set, this follows that we can recover the coefficient of expansion as shown:
(Φj, v) = (Φj, i=1Σn aiΦi) = i=1Σn ai (Φj,Φi) = aj
Furthermore,
(v,v) = (k=1Σn akΦk, i=1Σn aiΦi) = k=1Σn ak * i=1Σn ai (Φj,Φi) = i=1Σn |ai|2
If, in addition, the vector 'v' is normalized, then
i=1Σn |ai|2 = 1
Bra and Ket (Dirac) Notation:
We have written that the inner product is in the form (.,.).We could as well represent it in the form of a bra, |.>, and a ket, <.|. This is the Dirac notation. Placing the bra and the ket altogether forms a 'bracket' <.|.>. The set of vectors {Φj}j=1 n can be observed as a set of bra vectors (that is, space of vectors) {|Φj>}j=1 n. Then, we would require a dual set of vectors (that is, dual space of vectors) {<Φj|}j=1 n to be capable to write the inner product.
This follows from the foregoing, that we can represent the expansion of a wave-function:
ψ = Σj cjΦj as ψ = j=1Σn cj|Φj>
Additionally, (Φj,aΦj) = a(Φj,Φj) and (aΦj,Φj) = a*(Φj,Φj). It follows that a(Φj,Φj) = (a*Φj,Φj) = (a*)*(Φj,Φj). We can take out the given rule from this:
(Φj,aΦj) = (a*Φj,Φj)
More commonly, a could be an operator A. Then,
(Φj, AΦj) = (A+ Φj,Φj)
We can represent this in the form of:
< Φj|A|Φj > = < A+ Φj|Φj>
The above two equations become,
< Φj, v >=< Φj |i=1Σn ai|Φi > = i=1Σn ai < Φj|Φi > = aj
<v|v >=< k=1Σn akΦk | i=1Σn aiΦi > = k=1Σn ak * i=1Σn ai < Φj|Φi> = i=1Σn |ai|2
Orthogonal Functions:
An even function is symmetrical about the y-axis. In another words, a plane mirror positioned on the axis will generate an image which is precisely the function across the axis. An illustration is represented in the first part of the figure above. An odd function will require to be mirrored two times, once all along the y-axis, and once all along the x-axis to accomplish the similar effect. Second part of the figure above is an illustration of an odd function.
A function f(x) of x is stated to be an odd function when f(-x) = f(x), example: sin x, x2n+1, and a function f(x) of x is stated to be an even function when f(-x) = f(x), e.g., cos x, x2n where n = 0, 1, 2, .......
Some of the real-valued functions are odd, some are even and the rest are neither odd nor even. Though, we can write any real-valued function as the sum of an odd and an even function.
Assume that the function is h(x), and then we can write:
h(x) = f(x) + g(x)
Here f(x) is odd and g(x) is even. Then, f(-x) = -f(x) and g(-x) = g(x)
h(-x) = f(-x) + g(-x) = -f(x) + g(x)
Adding both the equation above, we get:
h(x) + h(-x) = 2g(x)
On subtracting the equations, we get:
h(x) - h(-x) = 2f(x)
It follows, thus, that
f(x) = [h(x) - h (-x)]/2
And g(x) = [h(x) + h(-x)]/2
Gram-Schmidt Orthogonalisation Procedure:
This gives a process of constructing an orthogonal set from a given set. Normalizing each and every member of the set then gives an orthonormal set. The process entails setting up the first vector, and then constructing the subsequent member of the orthogonal set by making it orthogonal to the first member of the set under construction. Then the next member of the set is made in a way to be orthogonal to the two preceding members. This method can be continued till the last member of the set is constructed.
Some useful Mathematics on Matrices:
You shall require the following as we frequently represent an operator in quantum mechanics through a matrix. We shall take as the usual basis in 3-dimensional space, {e1, e2, e3}. You might as well see this basis as {i, j, k}.
Orthogonal Matrices:
A tensor Q such that (Qa).(Qb) = a.b ∀ a,b ∈ E is known as the orthogonal matrix.
As (Qa).(Qb) = b. {QT (Qa)} = b .{(QTQ)a}, an essential and sufficient condition for Q to be orthogonal is:
QQT = I
Or equally,
Q-1 = QT
Note that:
det (QQT) = det (Q) det (QT)
det (QQT) = det (Q) det (Q)
det (QQT) = (det (Q))2 = 1
=> det (Q) = ±1
'Q' is stated to be a proper orthogonal matrix if det (Q) = 1 and an improper orthogonal matrix when det (Q) = -1
When det (Q) = 1, then
det (Q - 1) = det (Q - I) det (QT)
det (Q - 1) = det (QQT - QT) (det (A) det (B) = det (AB) for any two square matrices)
det (Q - 1) = det (I - QT) (QQT = I for an orthogonal matrix Q)
det (Q - 1) = det (IT - QTT) (det A = det AT for any square matrix A.)
det (Q - 1) = +det (I - Q) (IT = I and QTT = I)
det (Q - 1) = (det (-A) = - det (A) for any square matrix A.)
det (Q - 1) = 0 (if a number is equivalent to its negative, it should be zero)
Thus, 1 is an Eigen value in such a way that ∃ e3 ∋Qe3 = e3
Symmetric Matrices:
For a symmetric matrix A, A = AT
Select e1, e2, e3 as Eigen-vectors of A having Eigen values λ1, λ2, λ3.
Aek = λkek
λk (ek . ej) = Aek . ej
λk (ek . ej) = ek . ATej
λk (ek . ej) = ek . Aej
λk (ek . ej) = λ(ek . ej)
This signifies that if λj ≠ λk, then ei . ej = δij
This signifies that we could stand for a symmetric matrix as a diagonal matrix with only the entries Aii = λi:
This result is termed to as the spectral representation of a symmetric matrix.
Hermitian Matrices:
The Adjoint (or Hermitian conjugate) of a matrix A is represented by:
Adj (A) = A+ = ((A)T)*
The Hermitian matrix is the complex equivalent of the real symmetric matrix, satisfying
A+ = A
Unitary Matrices:
The complex analogue of the real orthogonal matrix is a unitary matrix, that is, AA+ = I or equally,
A+ = A-1
Normal Matrices"
A normal matrix is one which commutes by its Hermitian conjugate.
That is,
AA+ = A+A
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Application of Indole in Drug Synthesis tutorial all along with the key concepts of Indomethacin, Vinca Alkaloids and Other applications of Indole
www.tutorsglobe.com offers Design Guidelines homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
ionic or salt-like hydrides tutorial all along with the key concepts of covalent hydride, metallic hydrides, electronegativity values, formation of hydrides, white crystalline solids
Volumetric Analysis tutorial all along with the key concepts of Principle, Requirements, Procedure, Observations and Results, Treatment of Results, Experiment 2B
The electronic home appliance that is employed to wash the several types of clothes without applying any physical efforts is termed as a Washing machine.
The Valence Bond Theory tutorial all along with the key concepts of Hybridisation of Atomic Orbitals, sp Hybrid Atomic Orbitals, sp2 Hybrid Orbitals, sp3 Hybrid Orbitals, Molecular Shapes of Compounds
Membranes and membrane structure tutorial all along with the key concepts of Chemical composition of biological membranes, Lipids of membrane, Membrane proteins, Molecular structure of membranes, Properties of biological membranes and Function of membranes
Finding out topmost Political Theory Assignment Help service at reasonable rates? Avail it from qualified tutors!
Analytical Chemistry tutorial all along with the key concepts of Applications of Analytical Chemistry, Scope of Analytical Chemistry, Function of Analytical Chemistry and classification of analytical methods
tutorsglobe.com nervous system assignment help-homework help by online co-ordination systems tutors
identification of the fault in specified tv receiver - switch 'on' the tv receiver. if the picture on the screen is with snow and noisy sound, then go to the subsequent step. it verifies the receiver has snow picture fault.
Adaptation by Animals to different Environments tutorial all along with the key concepts of Morphological Adaptation, Aquatic animals, Terrestrial Animals, Physiological Adaptation and Behavioral Adaptation
Friction tutorial all along with the key concepts of Laws of Friction, Coefficient of Friction, Coefficient of Friction Formula, Nature of Friction, Coefficients of static and kinetic friction, Frictional Coefficient
tutorsglobe.com human genetics-karyotyping assignment help-homework help by online modern genetics tutors
entropy of change tutorial all along with the key concepts of infinitesimal-carnot cycles, entropy changes in isolated systems, , statements of the second law of thermodynamics, entropy changes during expansion and compression
1964168
Questions Asked
3689
Tutors
1492890
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!