Motion in a Vertical Circle:
The given represents the small body joined to the cord of length R and whirling in the vertical circle about a fixed point 0 to which other end of cord is attached. The motion although circular is not uniform as speed increases on way down and decreases on the way up. Forces on body at any point are its weight w=mg and tension T in cord. Resolving weight of the body in its components we have magnitude of normal component = w cos θ
Magnitude of tangential component = w sin θ
Resultant tangential and normal forces are:
F11 = w Sin Θ and F⊥ = T - w cos Θ
From Newton's second law then, we get tangential acceleration a11
a11 = F11/m g sin Θ
This is same as that of the body sliding down the frictional inclined
Plane of slope angle Θ
Normal radial acceleration a⊥ = V2/R is
a1⊥ = F⊥/m = T - w cos Θ/m = V2/R
T = m(V2/R + g cos Θ)
At the lowest point of path, Θ = O, thus Sin Θ = 0 and cos Θ = 1. So at this point F11 = 0 and a11 = 0 and acceleration is entirely radial (upward). Magnitude of tension, from Equation
is T = m(V2/R + g)
At highest point, Θ = 180° so Sin Θ = O and Cos Θ = - 1, and acceleration once more is entirely radial (downward). Tension for this case is
T = m(V2/r - g)
For this type of motion, there is certain critical speed VC at the highest point below which cord slacks and path will no longer be circular. To determine critical speed, we set T = 0 in Equation) i.e.
m(V2c/R - g) = 0
Therefore Vc= √Rg
Motion of a Satellite:
To launch the artificial satellite in space, multi-stage rockets are utilized. It raises satellite to the predetermined height, projects it in right direction with the velocity that allows it to revolve around Earth. This velocity is known as escape velocity. Escape velocity is a velocity with which a body must be projected to allow it to escape from gravitational influence of Earth.
We may calculate acceleration from velocity of satellite and the radius of the orbit therefore:
W = Fg = GMME/r2 = M(V2/r)............ Eq.1
From which we get
V2 = GME/r; V = √GME/r.................. Eq.2
We figure out from equation that larger the radius r, the smaller the orbital velocity.
We can also state speed of satellite in terms of the acceleration because of gravity g at surface of the earth that is provided by g = GME/R2. Combining this with Eq.2 we get
Since GME = gR2
V = √GME/r = √gR2/r
V = R√g/r.................. Eq.3
Acceleration given by aR = V2/r can also be expressed in terms of g thus:
aR = r2/R2g.................. Eq.4
Equation Eq.4 provides acceleration of gravity at radius r. Satellite, similar to any projectile is freely falling body. Acceleration is less than g at surface of earth in ratio of the square of radii.
Period T or time needed for one complete revolution is Equal to circumference of orbit divided by velocity, V:
T = 2Πr/v = (2Πr)/(R√g/r) = [(2Π)/(R/√g)] r3/2
It can be observe that longer the radius of the orbit the longer the period. R is a radius of earth here.
Parking Orbit:
The parking orbit is the temporary orbit utilized during launch of the satellite or other space probe. The launch vehicle boosts in parking orbit, and then coasts for the while, then fires again to enter final preferred trajectory. Alternative to the parking orbit is direct injection, where rocket fires continuously (apart from during staging) until its fuel is exhausted, ending with payload on final trajectory.
Reasons to use parking orbit:
Weightlessness:
The phenomenon of weightlessness takes place when there is no force of support on body. When body is efficiently in free fall, accelerating downward at acceleration of gravity, then you are not being supported. Sensation of evident weight comes from support that which feels from floor, from seat, etc. Different sensations of evident weight can take place on the roller-coaster or in aircraft as they can accelerate either upward or downward.
If you travel in the curved path in vertical plane, then when you go over top on such a path, there is essentially downward acceleration. Taking example of the roller-coaster that is constrained to follow a track, then the condition for weightlessness is met when the downward acceleration of the seat is equal to acceleration of gravity. Considering path of the roller-coaster to be the segment of a circle so that it can be associated to centripetal acceleration, situation for weightlessness is
Vweightless = from centripetal acceleration relationship v2/r = g
Weightlessness you may feel in the aircraft takes place any time aircraft is accelerating downward with acceleration 1g. It is possible to experience weightlessness for the significant length of time by turning nose of the craft upward and cutting power so that it travels in the ballistic trajectory. The ballistic trajectory is common kind of trajectory you get by throwing the rock or baseball, neglecting air friction. At every point on trajectory, acceleration is equal to g downward as there is no support.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com natural selection assignment help-homework help by online modern concept of natural selection tutors
chemistry of alkanes and alkynes tutorial all along with the key concepts of sources of alkenes and alkynes, laboratory preparation of ethene and ethyne, isomerism in alkenes, test for unsaturation
binary liquid solutions tutorial all along with the key concepts of completely miscible liquids, raoult's law, ideal solutions, non ideal solutions, liquid pairs showing deviation from raoult's law and ideal solutions of volatile solutes
tutorsglobe.com drought enduring xerophytes assignment help-homework help by online xeric habitats characterization tutors
Classification and phylogeny tutorial all along with the key concepts of Taxonomic categories, Scientific naming of organisms, Five Kingdoms of Organisms, Phylogeny, Phylogenetics
Interpretation of a Mass Spectrum tutorial all along with the key concepts of Rules employed in the Interpretation of Mass Spectra, Mass Spectrum of Toluene and Examples of Mass Spectra Interpretation
Potentiometric Titration tutorial all along with the key concepts of Principle of Potentiometric Titration, Location of End Point in Potentiometric Titration, Types of Potentiometric Titration and Redox Titration of Manganese by Potentiometry
Theory and lecture notes of Non-Computable Functions all along with the key concepts of non-computable functions, Turing Machines, undecidable problems, Busy Beaver problem, Theorem on Rado. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Non-Computable Functions.
tutorsglobe.com deflation assignment help-homework help by online inflation and deflation tutors
tutorsglobe.com significance of cash budgeting assignment help-homework help by online cash budgeting tutors
tutorsglobe.com errors of refraction assignment help-homework help by online receptor organs tutors
introduction to petroleum chemistry tutorial all along with the key concepts of crude oil reserves, refining process, fractional distillation, quality of petrol - octane number, conversion processes, petrochemicals
structure and bonding tutorial all along with the key concepts of Electrons in Atoms, The periodic table, Bonding Forces and Energies, Primary interatomic bonds, Ionic bonding, Covalent bonding, Metallic bonding, The atom
Linkages between Pigments-Dyes tutorial all along with the key concepts of Definition of Dyes, Features of Dyes, Dyeing and Fabric, Conventional pigment dyeing system, Differences between Dyes and Pigments
Sign up for reliable Torts and Compensation Systems Assignment Help and get authentic papers to bag the best grades!
1962905
Questions Asked
3689
Tutors
1450166
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!