Kinetic Theory of Gases:
Kinetic theory of gases makes transition between microscopic world of molecules and macroscopic world of quantities such as temperature and pressure. It begins out with a some basic hypothesizes concerning molecular behavior, and infers how behavior manifests itself on the macroscopic level. One of the most significant results of kinetic theory is derivation of the ideal gas law that not only is very helpful and significant.
We can summarize kinetic theory of gases with four basic postulates:
Gases are composed of molecules: We can treat molecules as point masses which are perfect spheres. Molecules in the gas are extremely far apart, so that space between every individual molecule is several orders of magnitude greater than diameter of molecule.
Molecules are in constant random motion: There is no general pattern leading either magnitude or direction of velocity of molecules in the gas. At any given time, molecules are moving in several different directions at several different speeds.
Movement of molecules is directed by Newton's Laws: In accordance with Newton's First Law, every molecule moves in the straight line at the steady velocity, not interacting with any of other molecules except in the collision. In the collision, molecules exert equal and opposite forces on one another.
Molecular collisions are perfectly elastic: Molecules don't lose any kinetic energy when they collide with one another.
Kinetic theory projects the picture of gases as small balls which bounce off one another whenever they come in contact. This is, of course, only an estimate, but it becomes extraordinarily accurate estimate for how gases behave in real world.
Pressure Exerted By Gas:
To compute pressure exerted by the gas, we have to make some essential assumptions; they are as follows:
Let the molecules of the gas moving at random in the container. Molecules are repeatedly colliding with each other and with walls of container. It is supposed that all collisions are elastic. When the molecule collides with wall, a change of momentum takes place. Change in momentum is caused by force exerted by wall on molecule. Molecule applies the equal but opposite force on wall. Pressure applied by gas is because of the sum of all the collision forces.
Root Mean Square Velocity (R.M.S) of Gas Molecules:
Expression for pressure can be written as, 1/3ρC2 ‾
Therefore the root-mean-square velocity of all the gas molecules can be defined as
Therefore C2 ‾ =3P/ρ
Therefore √C2 ‾ = √3Pρ
As a result if we know pressure (P) and its density ρ of gas. We can compute r.m.s. velocity of gas molecules.
Distribution of Molecular Speeds:
This explains how the speeds of molecules are distributed in the given closed system at particular temperature. Actual speeds differ from low to high values. At the given temperature, variation follows what is called as Maxwellian distribution.
Boltzmann constant:
Boltzmann constant, (symbol k), the fundamental constant of physics taking place in almost every statistical formulation of both classical and quantum physics. Constant is named after Ludwig Boltzmann, 19th-century Austrian physicist, who considerably contributed to foundation and development of statistical mechanics, the branch of theoretical physics. Having dimensions of energy per degree of temperature, Boltzmann constant has the value of 1.380650 × 10-23 joule per kelvin (K), or 1.380650 × 10-16 erg per kelvin.
Physical importance of k is that it gives the measure of amount of energy (that is, heat) corresponding to random thermal motions of molecules of the substance. For the classical system at equilibrium at temperature T, average energy per degree of freedom is kT/2. In simplest example of the gas comprising of N noninteracting atoms, every atom has three translational degrees of freedom (it can move in x-, y-, or z-directions), and so total thermal energy of gas is 3NkT/2.
Internal Energy of a Gas:
Internal energy is stated as energy related with random, disordered motion of molecules. It is divided in scale from macroscopic ordered energy related with moving objects; it refers to invisible microscopic energy on atomic and molecular scale. For instance, room temperature glass of water sitting on the table has no clear energy, either potential or kinetic. But on microscopic scale it is the seething mass of high speed molecules wandering at hundreds of meters per second. If water were tossed across room, this microscopic energy wouldn't essentially be changed when we superimpose ordered large scale motion on water as a whole.
Monatomic gas:
Monatomic is the combination of words mono and atomic, and signifies single atom. It is generally applied to gases: the monatomic gas is one in which atoms are not bound to each other. Every chemical elements will be monatomic in gas phase at adequately high temperatures.
Diatomic gas:
Diatomic molecules are molecules composed of two atoms chemically bonded together. Atoms can be of same element (homonuclear molecules), or of different elements (heteronuclear molecules). Diatomic molecules having different elements are hydrogen chloride (HCl), carbon monoxide (CO) and nitrogen monoxide (NO).
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com explaination of downward translocation assignment help-homework help by online translocation types tutors
theory of pricing policy and key concepts of uniform pricing, price discrimination, complete price discrimination, direct segment discrimination, bundling and cannibalization, get managerial economics question's answers from tutors.
tutorsglobe.com root system assignment help-homework help by online root-stem and leaf tutors
Ecology of Terrestrial and aquatic animals tutorial all along with the key concepts of Ecology and Biology of Fish Species, Clupeidae, Carangidae, Polynemidae, Sciaenidae, Sparidae and Penaeid shrimps
in a digital system, a more correct presentation of a signal can be obtained through using more binary digits to represent it.
tutorsglobe.com characteristics of monopoly assignment help-homework help by online monopoly tutors
tutorsglobe.com phyllode assignment help-homework help by online leaf modification tutors
www.tutorsglobe.com offers leveling of dfd homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Photochemical reactions tutorial all along with the key concepts of Features of Photochemical Reactions, Photochemical Process, Formation of Ozone, Types of Photoreactions, Photofragmentation, Photohydration, Carbonyl compounds
The process for creating a cord band on an armature is displayed in the below diagram, and the following directions should be observed.
Theory and lecture notes of Bisection method and Locating Roots all along with the key concepts of bisection method and locating roots, Bounding the Error, Locating a root. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Bisection method and Locating Roots.
Heterocyclic Compound tutorial all along with the key concepts of Occurrences of Heterocyclic Compounds, Classification of Heterocyclic compounds, Five membered Heterocyclics, Six-membered Heterocyclics, Condensed Heterocyclics and Naming Heterocyclic Compound
Introduction to Sleep tutorial all along with the key concepts of What is sleep, Types of Sleep, What causes us to feel sleepy, How much sleep do we need, What is the biological clock, Sleep disorders, Effects of Sleep Deprivation and Good Sleep Hygiene
solvation of alkali metal ions tutorial all along with the key concepts of solvated electrons, cmplexation behaviour of alkali metals, anomalous natures of lithium
tutorsglobe.com underground modifications assignment help-homework help by online modifications of stem tutors
1961534
Questions Asked
3689
Tutors
1452006
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!