Introduction to Gauss law:
Gauss's law represents the relation between an electric charge and the electric field which it sets up. It is an effect of Coulomb's law. However it includes no additional information, its mathematical form let us to resolve numerous problems of electric field computation far more expediently than via the use of Coulomb's law.
Electric flux:
Electric field can be explained quantitatively by employing the concept of electric flux. Flux signifies flow. The rate of flow of a fluid (that is, the volume of the fluid crossing an area held perpendicular to the surface per unit time) is termed as the flux of the fluid and is equivalent to vds (that is, v is the velocity of fluid and ds is the small surface).
Analogous to the flux of fluid, the flux of the electric field is termed as the electric flux. Electric flux is proportional to the number of electric field lines penetrating a surface or passing via a virtual surface. Electric flux is stated as the electric field, E, multiplied through the component of area perpendicular to the field.
Assume that an 'E' field whose field lines cut via or pierce a loop. Define 'θ' as the angle between E and the normal or perpendicular direction to the loop. We will now state a new quantity, the electric flux via the loop, as Flux, or Φ = E⊥ A = E A cosθ
E⊥ is the component of E perpendicular to the loop: E⊥ = E cosθ.
The SI unit of Electrical flux is Newton meters squared per coulomb (N m2C-1), or, equivalently, volt meters (V m).
Calculation of Electric Flux: For uniform and non uniform field
Case I: Uniform Field
The figure illustrates field lines passing via a rectangular surface of area 'A' perpendicular to the field lines.
The electric flux passing via this surface is given by the product of electric intensity and the surface area perpendicular to the field lines.
f = EA where 'f' represents the electric flux and 'A' denotes the surface area.
Assume that the surface is not perpendicular to the field lines then the electric flux is provided by the equation:
f = EA cos q
Here 'q' is the angle between the direction of electric field 'E' and the normal drawn to the surface in the outward direction.
If the normal to surface is parallel to the electric field as represented in the figure then the electric flux is:
f = EA Cos q, (q = 0)
f = EA Cos 0
f = EA
The electric flux becomes zero when the normal to the surface is perpendicular to the electric field as represented in the figure.
That is, f = EA Cos q, (q = 90o)
f = EA Cos 90
f = EA x 0
f = 0
Case II: Non-Uniform field
Let us now compute the electric flux passing via a surface if the applied field is not uniform. The surface is generally divided into a large number of small area dA in such a way that the electric field remains constant over that surface as illustrated in the figure.
The electric flux passing via dA(df) = EdA cosq
Total electric flux = s∫E→.dA→
The electric flux per unit area is stated as the electric flux density.
Gauss's Law:
Electric Flux via any closed surface enclosing a charge QS is proportional to the enclosed electric charge. Quantitatively it is represented by:
Φ = s E. dA = QS/εo (for Charge QS within the surface)
Φ = 0 (for Charges outside the surface)
QS is the total charge enclosed through the surface (comprising both free and bound charge), and εo is the permittivity of free space or electric constant. The left-hand side of the equation is a surface integral representing the electric flux via a closed surface S, and the right hand side of the equation is the net charge enclosed through S divided by the electric constant. This relation is termed as Gauss' law or Gauss's flux theorem, for electric field in its integral form. S is termed as Gaussian surface. Gauss's law associates the distribution of electric charge to the resultant electric field. Gauss' law is one of the four Maxwell's equations forming the base of classical electrodynamics.
Gauss's law can be employed to derive Coulomb's law and vice-versa. Gauss's law is much helpful to determine the distribution of electric charge if the electric field is acknowledged. By means of integrating the electric field, the flux can be found out and the charge distribution in the area can be deduced through by employing Gauss Law.
Gauss's law can be used in the reverse problem as well (that is, the electric charge distribution is acknowledged and the electric field requires to be computed) beneath certain conditions. When the electric charge distribution has several kinds of symmetry, then the electric field passes via the surface uniformly and E can be calculated by using Gauss Law example: electric fields due to infinite layer of charge, isolated charged sphere and charged infinite cylinder can be found through considering the Gaussian surfaces having the planar symmetry, spherical symmetry and cylindrical symmetry correspondingly and applying Gauss law.
Though, when symmetry of any type is not present in the electric charge distribution, then it is hard to calculate electric field from the given distribution of electric charge.
The gauss's law can be written in term of divergence theorem as:
∇. E = ρ/ε0
Here,
∇. E = electric field divergence
ρ = total electric charge density.
Gauss's Law for Magnetism:
The Gauss Law for Magnetism illustrates that there are no magnetic charges analogous to the electric charges.
The total magnetic flux out of any closed surface is zero.
Φ = B→.dA→ = 0
Application of Gauss's Law:
Gauss's law is applicable to any hypothetical closed surface (termed as a Gaussian surface) and enclosing a charge distribution. Though, the evaluation of the surface integral becomes simple only if the charge distribution has adequate symmetry. In such condition, Gauss's law permits us to compute the electric field far more simply than we could use Coulomb's law. As gauss's law is applicable for an arbitrary closed surface, we will make use of this freedom to select a surface having the similar symmetry as that of the charge distribution to calculate the surface integral.
1) Spherical Symmetry:
A charge distribution is spherically symmetric when the charge density (which is, the charge per unit volume) at any point based only on the distance of the point from a central point (termed as centre of symmetry) and not on the direction.
Figure above points out a spherically symmetric distribution of charge in such a way that the charge density is high at the centre and zero beyond r. Spherical symmetry of charge distribution means that the magnitude of electric field as well based on the distance 'r' from the centre of symmetry.
Φ = (q/4πεor2) x (4πr2) = q/εo
2) Electric Field of a Spherical Charge Distribution:
Charge q is spread out uniformly over the surface of the spherical shell of radius r.
The surface area of the shell is 4πr2 and the charge density is thus q/4πr2. By symmetry the field is perpendicular to the shell at each and every point; therefore the electric flux on any concentric sphere is EA.
For r > R
E = q/4πεor2
For r < R
E = qr/4πεoR3
3) Plane Symmetry:
By using a cylindrical Gaussian surface, one can represent that for a line of charge having a (positive) linear charge density 'λ', the electric field E at a distance 'r' from the points radially outward and consists of magnitude
E = λ/2πεor
E = σ/2εo
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Respiration tutorial all along with the key concepts of Retrieving Glucose from other Molecules, Retrieval from Sucrose, Glycolysis, Potential Energy of Glucose, Breakdown of Glucose to Pyruvic Acid and The Krebs cycle
Vertebrate chordates tutorial all along with the key concepts of Characteristics of Subphylum Vertebrata, Features of Superclass Agnatha, Characteristics of the Class Cyclostomata, Features of Class Ostracodermi and Gnathostomata
Op-Amp Applications tutorial all along with the key concepts of Constant-Gain Multiplier, Multiple-stage Gains, Voltage Summing, Voltage Buffer, Voltage-Controlled Current Source, Current-Controlled Voltage Source, DC and AC Millivoltmeter, Low-Pass Filter, Notch Filter
tutorsglobe.com ensuring economic stability assignment help-homework help by online objectives of fiscal policy tutors
TutorsGlobe.com Environmental Impact of Chemical Industry Assignment Help-Homework Help by Online Access Chemistry Tutors
iupac prefixes-suffixes for various compounds tutorial all along with the key concepts of alkenes, alkynes, alkyl halides, alcohols, ethers, aldehydes, ketones, acid amides, acid anhydrides, ethers, amines
tutorsglobe.com conditions of perfect competition assignment help-homework help by online perfect competition tutors
Biochemical and biomedical genetics tutorial all along with the key concepts of Variation in proteins, Defects of abundant and structural proteins, first single gene polymorphisms, Variations in non-coding and non-functional DNA
hite phd certified tutors and avail chinese history assignment help service to get customized solution documents at low prices!
tutorsglobe.com genetic drift assignment help-homework help by online modern concept of natural selection tutors
Theory and lecture notes of Aggregate Demand and Inflation all along with the key concepts of aggregate demand and inflation, monetary policy reaction function, Phillips curve equation. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Aggregate Demand and Inflation.
Principles of Ultraviolet-Visible Spectroscopy tutorial all along with the key concepts of Absorption Spectroscopy, Instrumentation of Spectroscopy, Absorption of Radiation in the UV/Visible Region and Beer-Lambert Law
Concept of Divide and Conquer algorithm-Assignment help and Homework help including the key concepts of Steps of Divide and Conquer, Binary Search, Effectiveness of binary search, Optimizing source code, Pre-Computation, Pre-Calculation, Decomposition and Symmetries.
Simple Experimental design-Analysis of Variance tutorial all along with the key concepts of Types of Experimental Design, Completely Randomized Design, Randomized Block Design, Simple Factorial Experiment, Analysis of Variance, Assumptions in ANOVA and Hypotheses in ANOVA
Polymer Chemistry II tutorial all along with the key concepts of Formation and Structure, Polyaddition as chain reaction, Polyaddition as step reaction, Polycondensation
1955024
Questions Asked
3689
Tutors
1494375
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!