Work:
Imagine the hydrostatic system contained in the cylinder with movable piston. Assume external force F acted in direction showed moving piston from initial point 1 to final point 2 through distance dx. Assume that cylinder has cross section area A, that pressure applied on system at piston face is P, and that force is PA. System also applies opposing force on piston. Work done dW on system in the method described above is
dW = PAdx
But Adx = dV
Therefore dW = -PdV
Negative sign in the last equation specify negative change in volume (that is decrease in volume).
In the finite quasi-static procedure in which volume changes from Vi to Vf, work done is
W = -∫vivfPdV
Work in Quasi-Static Process:
For the quasi-static isothermal expansion of compression of the ideal gas
But the ideal gas is one which equation of state is PV = nRT , where n and R are constant. Replace P with nRt/V in equation
W = -∫vivf(nRt/V)dV
And as T is constant for isothermal process,
W = -nRt∫vivfVdV
Integration provides
W = -nRtlnVf/Vi
Work and Internal Energy:
When the adiabatic work (dWad) is done on or by system, the internal energy of the system changes. Change in internal energy (ΔU ) is equal to adiabatic work done.
dU = dwad
If system changes from state 1 to state 2 by doing adiabatic work, and if states are varied by finite amount, then
∫U1U2dU = U2 - U1 = ∫12dWad = -Wad
Assume work done is mechanical work (i.e. mechanical adiabatic work), then
U2 - U1 = -∫12PdV
Heat:
Heat (Q) is a form of energy that is transferred from one part of system to another or to another system by virtue of difference in temperature. Temperature gradient determines direction of heat flow. When heat flows in or out of system from its surroundings, temperature of the system increases or decreases. And internal energy of system changes from initial state (Ui ) to final state (Uf ). This change in internal energy DU should be equal to the heat flow i.e.
ΔU = Uf - Ui = Q
Sign of Q
Q is positive when there is the flow of heat in system
Q is negative when there is flow of heat from system
Heat bath or heat reservoir: This is a body which is so large that its temperature doesn't change significantly when heat flows in or out of it.
Heat sink: Just like heat bath, this is a body which is so large that its temperature doesn't change significantly when heat flows in or out of it. Temperature of heat sink is lower compare to that of heat bath.
First Law of Thermodynamics:
The internal energy of the system can change only if:
a) There is flow of heat in system or out of the system
b) Work is done on system or by system.
Therefore, change in internal ΔU of system is
ΔU = Uf - Ui = Q - W
Where Q is heat and W is work. This equation is first law of thermodynamic. Differential for of first law of thermodynamics is
DU = Dq - PdV
Statement of First Law of Thermodynamics
The internal energy of the system tends to increase if energy is added as heat Q and tends to decrease if energy is lost as work W done by system.
Response Functions:
When heat is added or withdrawn from the system, there is change in one, two or all its properties. This change in measurable property/properties (macroscopic behavior) is/are basis of thermometer. We can characterize macroscopic behavior of the system response's functions. These functions can be estimated experimentally from changes in thermodynamic coordinates by use of external probes. Examples of response functions are Heat Capacities, force constant (like isothermal compressibility), and thermal response (like expansivity of a gas).
Heat Capacities:
When heat is added to the system, its temperature will change. Heat capacities are attained from change in temperature of the system on addition of heat to system.
From equation of first law, dQ = dU + PdV
Heat capacity at constant volume
Cv = (∂Q/∂T)v
Heat capacity at constant pressure
Cp = (∂Q/∂T)P
Heat capacities can be estimated experimentally.
Force Constant:
Force constants estimate (infinitesimal) ratio of displacement to force and are generalization of spring constant. Examples comprise isothermal compressibility of a gas
kT = -1/V [(∂V/∂P)T]
And susceptibility of the magnet
χT = 1/V[(∂M/∂B)T]
It can be shown using equation of state for ideal gas ( PV ∝ T ) that
kT = 1/P
Thermal Response:
This probes change in thermodynamic coordinate with temperature. Example, coefficient of volume expansion (expansivity of a gas) is given by
β = 1/V[(∂V/∂T)P]
And this is equal to 1/T for ideal gas.
Special Cases of First Law of Thermodynamics:
Consider four different thermodynamic procedures in which certain limitation is imposed on system and corresponding implication when apply to first law. Adiabatic process, dQ = 0, and equation of first law reduces to
dU = dW = PdV
Isochoric process, dV = 0, and equation of first law becomes
dU = dQ = cVdT
Cyclic Process, dU = 0, and equation of first law becomes
Q = W
Free expansion, Q = W = 0, and equation of first law becomes dU = 0
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Switched Mode Power Supply tutorial all along with the key concepts of Switched-mode power supply operation, Rectifier, filter and inverter, Converter and output rectifier, Drawbacks of switched mode power supplies, switched-mode power supply
Reaction Kinetics tutorial all along with the key concepts of Reaction Rates, Rate Laws, Absorbance Spectroscop, Factors affecting Reaction Rates, Units of rate constant and rate law from experimental data
www.tutorsglobe.com offers acidity of carboxylic acids homework help, acidity of carboxylic acids assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
some colligative properties tutorial all along with the key concepts of vapor pressure lowering, raoult's law, boiling point elevation, freezing point depression and osmotic pressure
Incompatibility mechanisms tutorial all along with the key concepts of Self-incompatibility in plants, Mechanisms of self-incompatibility, Gametophytic self-incompatibility, Heteromorphic self-incompatibility, Cryptic self-incompatibility, Self-compatibility
Are short deadlines giving you nightmares? Get Islamic History and Civilization Assignment Help today and relax!
tutorsglobe.com complications of enteric fever assignment help-homework help by online salmonella tutors
Competition in organisms tutorial all along with the key concepts of Kinds of competition, By mechanism, species, Evolutionary strategies, Interference competition and Interspecific competition
tutorsglobe.com demand assignment help-homework help by online demand and supply tutors
We greatly acclaimed our Urban Culture and Development Assignment Help, as our tutors are available 24x7 to help you to score high!
super conductivity-basic phenomenon tutorial all along with the key concepts of empirical criteria, transition temperature, energy gap, properties dependent on energy gap, density of states, acoustic attenuation
www.tutorsglobe.com offers software design process homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
www.tutorsglobe.com offers features of programming language homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
www.tutorsglobe.com offers Dont of Good Programming Style homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
www.tutorsglobe.com offers straight line depreciation homework help, straight line depreciation assignment help, online tutoring by accounting tutors.
1945065
Questions Asked
3689
Tutors
1477876
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!