Concept of Elasticity:
Solids tend to change their size and shape whenever sufficiently strong external forces are exerted to them and to return to their original size or shape after the forces causing the change are removed. The Solids that retain their shape or size after the force causing the change has been removed are stated to be 'elastic', and this property of solids is termed as elasticity.
Define:
1) Elasticity is the capability of a substance to get back its original size and shape after being distorted through an external force.
2) An elastic material is one which regains its original size and shape after distorting the external force which has been removed.
Statement of Hooke's Law:
Hooke's law defines that, given the elastic limit of an elastic material is not exceeded, the extension, 'e', of the material is directly proportional to the applied force, F.
Mathematically,
F ∝ e
That is, F = K e
Here, k is the constant of proportionality termed as elastic constant or force constant or stiffness of the material.
From the above formula, K = F/e
If 'F' is in Newton and 'e' in meters, then K is in Newton per metre (Nm-1)
Elastic constant or stiffness of the elastic material is the force needed to produce the unit extension of the material.
The working of spring balance is dependent on Hooke's law. In this situation F = mg, the weight of the body that is proportional to 'e', the extension of the spring.
Experimental Verification of Hooke's Law:
Consider two similar metallic wires A and B on which main scale and vernier scales are fixed and the wires are hanged from the rigid support.
The kinks generated on the reference wire A and experimental wire B are eradicated by loading weight at their free ends termed as dead loads by the assistance of meter scale length l at wire B is measured and by the assistance of micrometer screw gauge its radius 'r' is as well measured.
Now, main scale reading and vernier scale readings are noted. The equivalent loads are added on the pan of wire B and corresponding reading are noted. Assume, w1, w2, w3 and w4 are the weights on the wire B and e1, e2, e3 and e4 are corresponding elongations generated, in elastic limit.
As, Y = (F/A)/(Δl/l) = (Fl)/(πr2e)
When a graph is plotted between F and e, a straight line from horizon is achieved whose slope F/e is computed and we have,
Y = Slope x (l/πr2)
Then, the ration (weight/Elongation) is computed and found that, F/e = constant
That is, F/e = constant
Thus, F ∝ e
Young's Modulus of Elasticity:
Assume that a wire of length l (m) and cross-sectional area A (m2) is extended via e (m) through a force F (N).
(i) The ratio of the force to area, F/A is termed as the stress or 'tensile' of the elastic material.
Stress = F/A
(ii) The ratio of extension, 'e' to the original length, l of the wire that is, e/l is termed as the tensile strain of the wire.
Therefore Strain = e/l
F = stress x A
e = Strain x l
By using Hooke's law, F = ke
∴ Stress x A = k x Strain x l
∴ Stress = (kl)/A x strain
∴ Stress = k1
Constant = kl/A
Stress/Strain = k1
Stress ∝ Strain
Therefore Hooke's law can as well be stated as follows:
The tensile stress of the material is directly proportional to the tensile strain given the elastic limit is not surpassed.
The constant of proportionality, k1 is termed as Young's modulus of elasticity and is symbolized by the symbol 'γ'.
∴ Young's modulus (γ) = Stress/Strain
(γ) = (F/A)/(e/l)
The unit of γ is Nm-2 (Newton per square metre) the similar unit as stress, as strain consists of no unit.
Dimension of γ = (Dimension of stress)/(Dimension of strain)
= ML-1T-2
Elastic Potential Energy:
Definition: The elastic potential energy of a compressed or stretched material is the capability of the material to do work.
Elastic potential energy occurs due to work done in stretching or compressing the material.
W = 1/2 Fe = (1/2) ke2
Here 'F' is the maximum stretching (or compressing) force, 'e' is the extension (or compression) and 'k' is the force constant or rigidity of the material.
Illustration or application of elastic potential energy:
Whenever you stretch the rubber of a catapult and project a stone, the elastic potential energy stored in the rubber is transformed into the kinetic energy of the flying stone according to the law of conservation of energy.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com dark reactions assignment help-homework help by online cyclic and noncyclic photophosphorylation tutors
Theory and lecture notes of Lock management in a distributed system all along with the key concepts of deadlock detection, local deadlock, global deadlock. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Lock management in a distributed system.
tutorsglobe.com measurement of profit assignment help-homework help by online concepts of revenue tutors
tutorsglobe.com nitrogen fixation in legumes assignment help-homework help by online non-biological fixation tutors
Wittig Synthesis of C=C bond tutorial all along with the key concepts of Preparation of reagents, Mechanism and Stereochemistry of the Wittig reaction, Horner-Wadsworth-Emmons reactions and Advantages of Wittig reaction
tutorsglobe.com effects of global warming assignment help-homework help by online global warming tutors
tutorsglobe.com viral infections assignment help-homework help by online infections tutors
tutorsglobe.com hydrophily assignment help-homework help by online agents of pollination tutors
Proteins tutorial all along with the key concepts of Nature of Protein, Properties of Proteins, Biological Functions of Proteins, Melanin, Keratin, Hemoglobin and Enzymes
Theory and lecture notes of Coefficient of Determination all along with the key concepts of coefficient of determination, Coefficient of Non-Determination, Standard Error of Estimate. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Coefficient of Determination.
www.tutorsglobe.com offers hydroboration reactions homework help, hydroboration reactions assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
Photosynthetic Pigments tutorial all along with the key concepts of Pigments, Pigments in Plants, Accessory Pigments, Chloroplasts, Complexes of Pigments in Chloroplasts, Photophosphorylation-Chemiosmosis in Chloroplasts
Theory and lecture notes of Costs of Inflation all along with the key concepts of Costs of Moderate Expected Inflation, Costs of Moderate Unexpected Inflation, Hyperinflation and Its Costs, Inflation Tax. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Costs of Inflation.
theory and lecture notes of concept of equivalence of tms, pms and markov algorithms all along with the key concepts of post machines or tag machines, post machine simulates the tm. tutorsglobe offers homework help, assignment help and tutor’s assistance on concept of equivalence of tms, pms.
Application of the Iso-quinoline Ring System tutorial all along with the key concepts of Papaverine, Synthesis of Papaverine, Morphine, Isoquinolines and Parkinson's disease
1957163
Questions Asked
3689
Tutors
1456192
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!