Introduction:
Solid state physics is a study of crystalline solids, through methods like quantum mechanics, electromagnetism, crystallography, and metallurgy. It is largest branch of condensed matter physics. Solid state physics studies how large-scale properties of solid materials result from atomic-scale properties. Therefore, solid state physics forms theoretical basis of material science. It has direct applications, for instance in the technology of transistors and semiconductors. Solid materials can be separated into two distinct groups on the basis of their behaviour under influence of the external electric field.
Conductors - those in which there are electrons that are free to move in presence of field. Examples of these are metals, carbon, etc.
ii. Insulators or dielectrics - those in which electrons are strongly bound to atoms or molecules composing material and can't be detached by application of the electric field to the materials. Examples are sulphur, porcelain, mica, etc.
Dielectric Properties:
The dielectric is a non-conducting material, like glass, rubber, or waxed paper. The following are some of the properties of dielectric:
i) When the dielectric material is inserted between plates of capacitor, the capacitance increases by factor K, known as dielectric constant of dielectric
C = KC0
Where C0 is capacitance in absence of dielectric
ii) the dielectric constant K has no unit and it is characteristic of given material
iii) If εo is permittivity of free space and ε is permittivity of dielectric material, therefore
K = ε/ε0
iv) With introduction of dielectric materials, energy density becomes
u = 1/2εE2
v) Potential difference V between plates when the dielectric material is inserted, given that charge remains unchanged, is provided as:
V = V0/K
Where Vo is potential difference when dielectric is not inserted. Equation defines that potential difference V between plates decreases by the factor of K.
vi) If potential difference is kept unchanged when dielectric material is inserted, then we have,
Q = KQ0
Therefore, charge on the capacitor with fixed potential difference between its plates is increased by factor K
vii) If electric field between parallel plate capacitor is Eo and it is E after material with dielectric constant K is inserted into space between plates, then
E = E0/K
The electric field within dielectric is reduced by factor equal to dielectric constant
viii) Net field E within dielectric is provided as
E = E0 - Eind
Eind = E0(1 - 1/K)
ix) The induced electric field in dielectric is related to induced charge density σind through relationship Eind = σind/ε0
x) σind = σ(1 - 1/K) and Qind = Q(1 - 1/K)
As K is always greater than 1, these expressions show that Eind > Eo, σind > σ and Qind > Q.
Local Electric Field:
It must be noted that:
Assume the charges -q and +q are placed, respectively, at d/2 and -d/2 from origin, as shown below. Magnitude of potential because of this system at a point X is provided by
Φ(r) = q/4πε0(1/r1 - 1/r2)
Where r1, r2 are distances of X from + q and - q respectively.
If θ is angle between axis of charges and position vector of X, we can write
1/r1 ≈ 1/r + dcosθ/2r2 and 1/r2 ≈ 1/r - dcosθ/2r2
After solving:
Φ(r) = (q/4πε0)(dcosθ/r2)
Dipole moment, p, is vector along axis of dipole pointing in direction - q to + q and having magnitude qd. In terms of dipole moment, Equation becomes:
Φ(r) = pcosθ/4πε0r2 = p‾.r‾/4πε0|r|3
Φ(r) = -P‾/4πε0r2 . ∇(1/r) = -p‾.∇Φ0
Φ0 is potential of unit charge.
Field of electric dipole may also be stated in following way,
E‾ = 1/4πε0[(3(p‾.r‾)r‾ - r2p‾)/r5]
Considering cubic crystal dielectric and suppose electric field of magnitude Eo is applied parallel to one of axes of crystal. Field will push positively charged nucleus of atoms of dielectric slightly in direction of field and negatively charged electrons in opposite direction. We say that atom is polarized under influence of applied external field and charges are called polarization charges. The polarization P is stated as dipole moment p per unit volume, averaged over volume of the cell. Total dipole moment is stated as
P‾ = Σqnrn‾
Let us imagine that small sphere is cut out of specimen around reference point; then E1 is field of polarization charges on inside of cavity left by sphere, and E2 is field of atoms within cavity. Polarization charges on outer surface of specimen produce depolarization field, E3. Depolarization field is opposite to P, that is, field E3 is known as depolarization field, as within body it tends to oppose applied field Eo. The dielectric obtains polarization because of applied electric field Eo. This polarization is result of redistribution of charges inside dielectric.
The local electric field Eloc at any atom of dielectric may be expressed as
Eloc = E0 + E1 + E2 + E3
Contribution E1 + E2 + E3 is total effect at one atom of dipole moments of all the other atoms in system (in CGS units):
E1 + E2 + E3 = (3(p‾.r‾)r‾ - r2p)/r5 and in SI unit E1 + E2 + E3 = 1/4πε0[(3(p‾.r‾)r‾ - r2p)/r5]
If Px, Py, Pz are the components of the polarisation P referred to the principal axes of an ellipsoid, then the components of the depolarization field are written
E3x = -NxPx/ε0; E3y = -NyPy/ε0; E3Z = -NzPz/ε0
Dielectric Constant and Polarizability:
Consider dielectric behaviour of molecules that have permanent dipole moment. Dielectric constant ε has been expressed for isotropic or cubic medium relative to vacuum as:
ε = D/E = 1 + P/ε0E = 1+χ
Where χ is electric susceptibility.
Susceptibility (in SI unit) is related to dielectric constant by
χ = P/ε0E = ε - 1
If field is not too large, strength of induced dipole moment in the atom i is proportional to local electric field acting on dielectric. That is
Pi ∝ Eloc = Pi = αiEiloc
Where αi is Polarizability and pi is dipole moment of atom i.
Electric susceptibility can now be expressed as:
χ = P/E = ΣiEilocNiαi/Eloc - (4π/3)P
Using Lorentz relation,
P/E = ε - 1/4π
Therefore (in CGS) ΣNiαi = 3/4π((ε - 1)/(ε + 2))
This equation is called as Clausius-Mossotti equation, defines relation between dielectric constant and atomic polarizabilities
Dipole Relaxation and Dielectric Losses:
Dipole relaxation time is time interval characterizing restoration of disturbed system to equilibrium configuration; the relaxation frequency is stated as reciprocal of relaxation time. Orientational contribution to dielectric constant is the major cause to difference between low frequency dielectric constant and high frequency dielectric constant. Orientational relaxation frequencies are strongly dependent on temperature and frequency as:
α = α0/(1 + iωτ)
Where τ is called as Debye relaxation time, α0 is static orientational Polarizability and ω is angular frequency.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Get first-class Immunology and Immunochemistry Assignment Help from skilled & qualified tutors to boost your grades at reasonable prices.
tutorsglobe.com iccu assignment help-homework help by online circulation tutors
heat change tutorial all along with the key concepts of heat change under constant volume, enthalpy and enthalpy changes, relation between cp and cv of an ideal gas
tutorsglobe.com firewall assignment help-homework help by online computer programming tutors
tutorsglobe.com palmately compound leaf assignment help-homework help by online simple and compound leaves tutors
tutorsglobe.com mirabilis jalapa assignment help-homework help by online intermediate inheritance tutors
liquids tutorial all along with the key concepts of comparison of liquids with gases and solids, structure of liquid, properties of liquids, cohesion and adhesion and viscosity
Reptiles tutorial all along with the key concepts of Features of Reptiles, Lizard, Ecological Adaptation, Different kinds of Lizards and adaptive characteristics of lizard
tutorsglobe.com control of microorganisms assignment help-homework help by online general microbiology tutors
there are three major components of the cpu that are as follow - arithmetic-logic unit (alu), control unit (cu), on-board cache memory.
tutorsglobe.com endocytosis and exocytosis assignment help-homework help by online cell membrane tutors
tutorsglobe.com attitudes toward risktaking assignment help-homework help by online choice under uncertainty tutors
tutorsglobe.com description of a flower assignment help-homework help by online flower-a metamorphosed shoot tutors
tutorsglobe.com mini hydel generation assignment help-homework help by online energy crisis tutors
score impeccable grades and get appreciation from professors with data warehouse-data mining assignment help at feasible prices.
1948425
Questions Asked
3689
Tutors
1447384
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!