Circuit Structure:The circuit diagram of Transistor Logic inverter is as shown in figure below. This circuit overcomes the limitations of single transistor inverter circuit. A few of the notable features of the circuit structure of TTL Logic family are as:A) An input transistor, T1, that performs a current steering function, can be considered of as a back-to-back diode arrangement.
Figure: Equivalent of Input Current-Steering Transistor
The transistor can work in either forward or reverse mode to steer current to or from T2. As it has a forward current gain, it gives a higher discharge current to discharge the base of T2 whenever turning it off.B) The output transistor pair, T3 and T4 as shown in figure below are termed to as a totem-pole output, can actively sink or source current to or from capacitive loads and permits the output voltage to be stated independently of the load joined to the gate. Resistor, R3, serves to limit the current. Beneath steady-state conditions, just one transistor is ON at a time.
Figure: Output Current Driving Transistors
Figure: Circuit Diagram and Transfer Characteristic of a TTL Inverter
C) The diode D, serves to raise the effective VBE of T4 that allows T4 to be turned OFF before T3 turns ON fully. It prevents large surge currents from flowing whenever both transistors conduct during transitions among logic states. The drawback is that the high logic voltage is decreased by an amount of the diode drop as shown in figure below.
Figure: Use of Diode in Totem-Pole Output
D) At last, T2 is a “phase splitter” driving transistor to drive output phase. It permits the logic condition to be phase-splitted in opposite directions and hence the output transistors can be driven in anti-phase. This permits T3 to be ON whenever T4 is OFF and vice-versa as shown in figure below.
Figure: The Phase Splitting Stage
Logical Operation:The logical functioning of circuit can be established by recognizing the state of conduction of each and every transistor in turn from input to output for all possible combinations of the input states. Transistors can be taken as either OFF or ON. Note that the input transistor, T1, might conduct in either reverse or forward mode. Drawing up a table of conduction states accordingly with reference to first figure gives:
INPUT T1 T2 T3 T4 D OUTPUT
LO ONFOR OFF OFF ONCUT-IN ONCUT-IN HI
HI ONREV ON ON OFF OFF LO
LO in - HI out and HI in - LO out => This is a logic inverter action Transfer Characteristic:The transfer characteristic can be assumed by applying a slowly increasing input voltage and determining the series of events that takes place with regard to modifications in the states of conduction of each and every transistor and the critical points at which the onset of such changes take place. Let consider the circuit and transfer characteristic of figure above.Point A:With input LO and the base current supplied to T1, this transistor can conduct in forward mode. As the only source of collector current is the leakage of T2 then T1 is driven to saturation. This makes sure that T2 is OFF that, in turn, signifies that T3 is OFF. Whereas there is no load exists, there are leakage currents flowing in the output phase that permit the transistor T4 and the diode D to be barely conducting the point of cut-in.Vo = VCC – VBE 4CUT-IN – VD CUT-INVo = 5 – 0.6 – 0.4 = 4VPoint A: Vi = 0V, Vo = 4VPoint B:Since the input voltage is gradually raised, the above condition prevails till, with T1 ON in saturation, the voltage at the base of T2 rises to reach the point of conduction and then:Vi = VBE 2CUT-IN – VCE1 SAT = 0.6 – 0.1 = 0.5V
Point B: Vi = 0.5V, Vo = 4VPoint C:Since the input voltage is further raised, T2 becomes more conducting, turning completely ON. Base current to T2 is supplied by forward biased base-collector junction of T1 that is still in saturation (that is, both junctions of T1 are forward biased). Ultimately, T3 reaches the point of conduction. This occurs when:Vi = VBE2ON + VBE3CUT-IN – VCE1SATVi = 0.7 + 0.6 – 0.1 = 1.2VNote that with transistor T3 at cut-in, VBE 3 = 0.6V that means that the current via R2 is 0.6V/1kΩ = 0.6mA. With operation in linear active region, the collector current in T2 is αFIE2 ≈ 0.97 x 0.6 = 0.58mA. The voltage drop across R1 is then VR1 = 0.58mA x 1.6 kΩ = 0.94V. Beneath this case, the voltage drop across T2 is:VCE2 = VCC – VR1 – VR2VCE2 = 5 – 0.94 – 0.6 = 3.46VThis verifies that T2 is still operating in forward active mode.With T3 beginning to conduct, there is a conduction path for current via T4 and the diode, D, that then turns completely ON. In this condition:Vo = VCC – VR1 – VBE4ON - VDONVo = 5 – 0.94 – 0.7 – 0.5 = 2.86VPoint C: Vi = 1.2V, Vo = 2.86VPoint D:Since the input voltage is further raised, T2 conducts more heavily, ultimately saturating. T3 as well conducts more heavily and ultimately reaches the point of saturation. As T2 becomes more conducting, its collector current rises. This in turn raises the voltage drop across R1 that in turn means that the voltage across T2, that is, VCE2, reduces. This falls below the need for conduction in T4 and the diode, D, and hence both of these turn OFF before the saturation of T3.Whenever T3 reaches the edge of saturation then:Vi = VBE2SAT + VBE3ON – VCE1SATVi = 0.8 + 0.7 – 0.1 = 1.4VVo = VCE3SAT ≈ 0.2VPoint D: Vi = 1.4V, Vo = 0.2VNoise Margins:By using points C and D on the transfer characteristic in first figure to recognize the critical points, we encompass:ViLMAX = 1.2V VOLMAX = 0.2V NML = 1.0VViHMIN = 1.4V VOHMIN = 2.8V NMH = 1.4VThe manufacturer’s specification assures:ViLMAX = 0.8V VOLMAX = 0.4V NML = 0.4VViHMIN = 2.0V VOHMIN = 2.4V NMH = 0.4V
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
tutorsglobe.com concept of working capital assignment help-homework help by online working capital management tutors
tutorsglobe.com prokaryotes assignment help-homework help by online prokaryotic and eukaryotic cell tutors
Theory of Unimolecular Reactions tutorial all along with the key concepts of Theories of Reaction Rates, Collision Theory and Activated Complex Theory
Classification of Dyes and Fibres tutorial all along with the key concepts of Acid dyes, Natural dyes, Basic (cationic) dyes, Synthetic dyes, Disperse dyes, Sulfur dyes
Free CAHSEE Study Guide, CAHSEE Test Papers, CAHSEE Practice papers, CAHSEE Test pattern and general information, Find CAHSEE exam information and resource, material free at Tutorsglobe.com
tutorsglobe.com environmental impacts assignment help-homework help by online energy crisis and its environmental impact tutors
tutorsglobe.com kidney transplantation assignment help-homework help by online kidney stone tutors
tutorsglobe.com mini hydel generation assignment help-homework help by online energy crisis tutors
tutorsglobe.com relationships among organisms assignment help-homework help by online environmental factors tutors
separation of peptides tutorial all along with the key concepts of protein purification, purification technique on the basis of solubility, purification technique on the basis of molecular size, kinds of gel materials
the term ‘percolator’ is invented from the word “percolate” which means to permit water to pass by the coffee grounds for extracting coffee that provides its color, taste and aroma.
A computer display standard firs marketed in 1987 by IBM is termed as VGA (video graphics array). VGA can be observed as an improvement of and successor to the preceding EGA and CGA graphics adapters.
Transcription tutorial all along with the key concepts of Biosynthesis of RNA, DNA as Template for RNA Transcription, Transcription in Eucaryotes, Post-Transcriptional Processing of RNA, Differences between RNA-DNA
Damped Harmonic Motion tutorial all along with the key concepts of restoring force, damping force, instantaneous velocity of oscillator, Solutions of differential equation, Heavy Damping, Critical Damping, Logarithmic Decrement, Relaxation Time
Get personalized English tutor – get English assignment help, homework help, and online tutoring services to solve your English difficulties online.
1942233
Questions Asked
3689
Tutors
1478926
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!