Switching Times:In practice, modifications in the state of conduction of transistor take time to take place. This cause delays in the response of output to changes at the input. Let consider a circuit as shown in figure below:
Figure: Non-Instantaneous Switching in the Transistor Inverter
Figure below exhibits the series of events throughout turn-on and turn-off of the transistor. The following characteristic switching times can be recognized.Delay Time, tdThis is the delay between switching on input base current to transistor and the point at which the transistor reaches cut-in and enters the forward active mode. Throughout this time, the transistor is not truly conducting however ionization currents are flowing that essentially charges up the base-collector and base-emitter junction capacitances. The length of this duration is generally quite small as compared with the other switching times and can be ignored.Fall-Time, tfNote that the fall-time for output voltage is, however, the rise time of collector current. Throughout this time, the transistor is operating in forward active mode, passing between saturation and cut-off. Note that the collector current reaches its utmost value at the edge of saturation, even although the charge stored in the base of transistor continues to increase as the transistor is overdriven into heavy saturation. The fall-time is generally estimated between 90% and 10% points on the output voltage profile.Storage-Time, tsIt is the time between the point at which the input voltage is brought low and that at which the output voltage starts to increase or correspondingly, the point at which the collector current starts to drop. Throughout this time, the transistor is still in saturation region. Therefore the collector current remains at its maximum saturation value, IC MAX, throughout this time. In effect what is happening is that the volume of surplus minority charge stored in the base, that has been put in by overdriving the transistor, is being eliminated through the base resistor till the transistor reaches the edge of saturation and enters the forward active region over again. Very frequently, the storage time is the biggest of the switching times and might be the principal limiting factor in the speed of operation of transistor in the digital circuits.Rise-Time, trNote that the rise-time for output voltage is, however, the fall-time of the collector current. Throughout this time, the transistor is again operating in forward active mode passing between the edge of saturation and cut-off. The collector current drops from its maximum value towards zero. Note, as well, that during this time, the base current is negative as surplus minority charge carriers are being eliminated from the base region. The rise-time is generally measured between 10% and 90% points on output voltage profile.The Ebers Moll model is an excellent large-signal, steady-state transistor model. Though, it does not deal with the transient conditions of modifying charge carrier profiles during modifications of mode of operation of the transistor whenever it is turning on or off. A better model is required to take account of such dynamic conditions.
Figure: The Sequence of Events during Transistor Switching
BJT Charge Control Model:Remember the minority carrier concentration profile in base region of a bipolar npn transistor operating in the forward active mode as shown in figure below:
Figure: Minority Carrier Charge Profile in the Base Region of BJT
Collector Current:The profile of charge distribution can be approximated as linear, that means that the slope of the distribution is taken as steady. This is equivalent to neglecting recombination in the base region and supposing that all electrons diffuse via base into the collector region. When the hole component of the collector current is ignored, it can then be state that the collector current is directly dependent on the volume of charge in base region in the forward active mode, QF, and the forward transit time, ΤF, for electrons passing via this region. Then beneath steady-state conditions:IC ≈ QF/ΤF, That is equal to αF = 1 When the linear approximation is supposed to extend to dynamic conditions where the volume of charge in base is changing, then for instantaneous collector current:iC(t) = QF(t)/ΤF and diC(t)/dt = (1/ΤF) [dQF(t)/dt]That is to state that, changes in the collector current will directly follow modifications in the surplus minority charge stored in the base whenever the transistor is operating in the forward active mode.Base Current:The base current is composed beneath steady-state conditions of the recombination component and the hole currents across the junctions. Recombination component can be evaluated as the volume of charge in base divided by the minority carrier lifetime:IBR = QF/ΤBThe hole currents can be accounted for by taking a modified equivalent carrier lifetime ΤBF = βF ΤB to provide a simplified steady-state base current of:IB = QF/ΤBFWhen the base terminal is employed as an input or controlling terminal, as in the case of single transistor inverter, then any modification in the base charge will be due to the change in base current. Involving a time varying component for dynamic conditions then provides the instantaneous base current as:iB(t) = QF(t)/ΤBF + dQF(t)/dtEmitter Current:Finally, for the emitter current, iE = iB + iC, and hence:IE(t) = QF(t)/ΤF + QF(t)/ΤBF + dQF(t)/dtThe complete model of charge control should as well account for the charge stored in the junction capacitances and modifications in such charges are as shown in figure below. These are designated QBC and QBE for base-collector and base-emitter junctions correspondingly. Dynamic changes in such charges will give mount to additional components of currents as dQBC/dt and dQBE/dt.
Figure: Currents due to Changing Charges in the Junctions of BJT
The ultimate complete set of Charge Control Equations for Forward Active mode of operation of the Bipolar Junction Transistor is then provided as:iC = QF(t)/ΤF – dQBC(t)/dtiB = QF(t)/ΤBF + dQF(t)/dt + dQBC(t)/dt + dQBE(t)/dtiE = QF(t)/ΤF + QF(t)/ΤBF + dQF(t)/dt + dQBE(t)/dtIn a more complicated charge control model, such equations can be extended to comprise the reverse mode of operation of transistor as well; however this is not essential for our purposes.
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
Importance of Soil and Plant Tissue Analysis tutorial all along with the key concepts of Plant Tissue Analysis - Nutrient Concentration, Plant-Stalk Nitrate, Application of Plant Analysis, Application of Soil Analysis, Plant, Soil and Water Relationship, Soil Depth and Layering
Avail top-rated Computer Networks Assignment Help by qualified tutors and enhance your academic grades at pocket-friendly prices.
www.tutorsglobe.com offers entity relationship diagram homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Kingdom Archaebacteria and Kingdom Eubacteria tutorial all along with the key concepts of Diagnostic Features of Archaebacteria, Classification of Archaebacteria, Archaebacteria Groups, Introduction to Kingdom Eubacteria, Categorization of Kingdom Eubacteria and Features of Kingdom Eubacteria
tutorsglobe.com structure of maize grain assignment help-homework help by online seed tutors
Gas Origin, Transportation and uses tutorial all along with the key concepts of Origin of Natural Gas Accumulations, Unconventional Gas Accumulations, Town Gas, Bio Gas, Hydrates, Natural Gas Production, Uses of Natural Gas, Power Generation and Environmental Effect-Natural gas
www.tutorsglobe.com offers classification and assembly structures homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
P-N Junction Diodes tutorial all along with the key concepts of Zero Bias, Zero Biased Junction Diode, Reverse Bias, Zener Diode, Forward Bias and Non-Rectifying Junctions
tutorsglobe.com chemosynthesis assignment help-homework help by online plant physiology tutors
tutorsglobe.com demerits of mixed economy assignment help-homework help by online mixed economy tutors
tutorsglobe.com programming in assembly assignment help-homework help by online computer programming tutors
Theory and lecture notes of What to do when Deadlock is detected all along with the key concepts of what to do when deadlock is detected, deadlock detection. Tutorsglobe offers homework help, assignment help and tutor’s assistance on What to do when Deadlock is detected.
Electrical Properties Associated with Rocks tutorial all along with the key concepts of Electric Current Methods, Resistivity and Conductivity, Electrical resistivities of rocks and minerals, Apparent resistivity, Overburden effects
introduction to physical chemistry tutorial all along with the key concepts of where is physical chemistry used, industries where physical chemistry is used, what is the importance of chemistry in everyday life
Theory and lecture notes of Lock management pragmatics all along with the key concepts of lock management, Lock manager interface, Lock actions, Lock names, Performance of Lock Manager. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Lock management pragmatics.
1940305
Questions Asked
3689
Tutors
1490345
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!