Power Factor:In common, an ac circuit will have a combination of resistive and reactive components and the reactive elements might be inductive or capacitive as shown in the circuit of figure below. The overall impedance of such a network, as seen by a current or voltage source driving it, has a phase and magnitude and it is this phase angle that determines the Power Factor of the network.
Figure: A General AC Circuit having Reactive Elements
Z = R ± jX and Φ = tan-1 (± X/R)Here the net reactance might be either capacitive or inductive.Power factor = cos ΦIn order to maximize the active power we need:cos Φ =1 that implies Φ = 0This signifies that, as seen by source, there must be no phase shift between the voltage and current, that is, the network must ideally look purely resistive.The total impedance of an ac network can be expressed in terms of constituent components that comprise an equivalent resistance, an equivalent inductance providing a positive reactive component and an equivalent capacitance providing a negative reactive component. Then:Impedance = Resistance + Inductive Component + Capacitive ComponentZ = REQ + j XLEQ – j XCEQWhen XLEQ = XCEQ, then the total reactive component of the impedance is zero and hence: Z = REQΦ = tan-1 (± X/R) = 0Power factor = cos Φ = 1If this is the case then, Sin Φ = sin 0 = 0 andApparent Power = Active Power = VRMS IRMS = (Vm Im)/2Reactive Power = j VRMS IRMS sin Φ = j [(Vm Im)/2] sin Φ = 0This signifies that, in this case, all of the power delivered to network by the source is dissipated in the resistive elements. That is, all the power delivered is consumed and becomes helpful or “active” power.Thus, in order to accurate the power factor of any ac network to unity, the total effective reactance should be made equivalent to zero. This is attained by making the capacitive reactive component of the impedance equivalent and opposite to the inductive reactive component. When the network has only one kind of reactance then a reactance of the opposite type should be added in order to neutralize it. Power Factor Correction:Consider comprising a capacitor to neutralise the consequence of the motor inductance and correct the Power Factor as shown in figure below.
Figure: Correction of the Power Factor of the Circuit
Z = [(R + jωL) (1/jωC)]/ [R + jωL + (1/jωC)]Z = REQ + jXLEQ - jXCEQMultiplying the numerator and denominator by jωC:Z = (R + jωL)/(jωCR – ω2LC + 1)Z = (R + jωL)/[(1 - ω2LC) + jωCR]Rationalising:
By breaking this into its equivalent components provides:REQ = R/[(1 – ω2LC)2 + (ωCR)2]jXLEQ = (jωL)/ [(1 – ω2LC)2 + (ωCR)2]-jXCEQ = [(-jωC) (ω2L2 + R2)]/ [(1 – ω2LC)2 + (ωCR)2]From this the corresponding resistive, inductive and capacitive components can be recognized. It is apparent that cancellation of the inductive and capacitive components needs the values of positive and negative imaginary terms which should be equivalent but opposite. This needs:(ωL)/ [(1 – ω2LC)2 + (ωCR)2] = [(ωC) (ω2L2 + R2)]/ [(1 – ω2LC)2 + (ωCR)2]This gives:ωL = ωC (ω2L2 + R2)L = C (ω2L2 + R2)
And hence,C = L/(ω2L2 + R2)For the component values given L = 200mH, R = 50? at a frequency of 50HzC = (200 x 10-3)/(62.82 + 502) = (200 x 10-3)/ (3943.8 + 2500) = 0.2/6443.8 = (0.2 x 106)/ 6443.8 μFC = 31 μFThen with the net reactance removed:Z = REQ = R/[(1 – ω2LC)2 + (ωCR)2]For the given values of R = 50?, L = 200mH and C = 31µF:REQ = 50/[(1 - 3142 x 0.2 x 31 x 10-6)]2+ [314 x 31 x 10-6 x 50]2REQ = 50/ [(1- 0.61)2 + (0.49)2] = 50/(0.15 + 0.24) = 50/0.39 = 128.2 ?In this situation, Im = Vm/|Z| = Vm/REQ = 310/128.2 = 2.42 AThen for the modified circuit with Power Factor Cos Φ = 1PAPP = PAVE = Vm Im/2 = (310 x 2.42)/2 = 375 WAnd with Sin Φ = 0 Reactive Power = PIMAG = j (Vm Im/2) sin Φ = j [(310 x 3.86)/2] x 0 = 0 WNote that the active or average power has not been raised but in fact remains similar. The apparent power though has been reduced and therefore the power that must be delivered by the source is as well decreased. However, the inactive, reactive or imaginary power has been removed from the viewpoint of the source that no longer has to generate this power. This signifies that all the power drawn from the source is now just helpful active power and no surplus power are demanded that is not used. In practice, some reactive power is drawn from the source throughout initial transient conditions then this power oscillates between the capacitance and inductance present beneath steady state conditions however is not dissipated.
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
tutorsglobe.com standard entropy assignment help-homework help by online entropy tutors
tutorsglobe.com transmitting antenna types assignment help-homework help by online antenna tutors
tutorsglobe.com microbes and diseases assignment help-homework help by online microbes in fermentation tutors
www.tutorsglobe.com offers electronic configuration of atoms homework help, electronic configuration of atoms assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
Aramids, Poly-Polycarbonate tutorial all along with the key concepts of Definitions of Aramids, Poly (methyl methacrylate) and Polycarbonate, Aramids, meta-linkage, amide nitrogen, cis-conformation
Stop the anxiety of scary deadlines & get impeccable Genetics Assignment Help service from 24x7 support of native tutors and score high.
logic gates process signals that present true or false. generally the positive supply voltage +vs present true and 0v represents false.
reactions of hydrocarbons tutorial all along with the key concepts of reaction with bromine, reaction with concentrated sulphuric acid, reaction with potassium permanganate, physical properties of hydrocarbons, chemical properties of hydrocarbons
Got complex assignments? Linear programming Assignment Help with 24/7 support of PhD experts are here to offer A++ solutions at feasible prices.
Wait no more and approach the most exceptional Elementary Mechanics Assignment Help service to secure top-notch grades with ease.
The winding pitch, Y = +2 (progressive winding). The front pitch, Yf = Yb – Y = 25 – 2 = 23 in terms of coil sides.
tutorsglobe.com significance of abscission assignment help-homework help by online abscission and senescence tutors
Optimal Costing System is dissimilar from entity to entity. It relies on an in-depth analysis of costs and advantages related with designing of an appropriate costing system.
tutorsglobe.com hyper–inflation assignment help-homework help by online inflation and deflation tutors
We offer top-class Corporate Finance Assignment Help from PhD tutors at affordable prices to fetch top grades at fair prices.
1961644
Questions Asked
3689
Tutors
1451755
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!