Impedance:An ac network usually contains current and voltage sources which are time varying, very generally sinusoidal. The circuit elements might be resistive, capacitive or inductive and will usually be a combination of such. Consequently, there will be resultant magnitude and phase relationships between currents and voltages at different locations all through the circuit. Consideration will be confined to circuits containing only a single driving source.
Definition of Impedance:
Impedance, Z, is defined as the ratio of voltage difference to current flowing between any two nodes in an ac circuit. Our interest will mainly be in this property as seen by the source driving input terminals of a network. In common, it is complicated in nature, having a real and an imaginary part. The real part is a resistive part whereas the imaginary part is the reactance. Since it is a complex quantity it too has phase and magnitude.Z = v(t)/i(t) = Real(Z) + Imag(Z) = R ± jX
Resistive-Capacitive Impedance:Consider an R-C circuit driven by an ac voltage source as shown below. This comprises resistive and reactive components and therefore must be considered as comprising impedance.ω = 2 Π ff = 50 Hz
Since the elements are in series, the voltage drops across them should sum to the voltage of source driving the circuit and hence:Z = v(t)/i(t) and v(t) = vR(t) + vC(t)Then, Z = [vR(t) + vC(t)]/i(t) = [vR(t)/i(t)] + [vC(t)/i(t)] = ZR + ZCZ = R - jXC = R – j (1/ ωC)This can be seen that the overall impedance of the network is provided by the impedances of an individual element in series. Therefore, these are simply added altogether just as in the situation of purely resistive elements in series. This is of interest to establish all the current and voltage relationships that apply to this circuit.V(t) = Vm sin ωt = Vm <00 is considered as the reference phase of zero.At first: R = 1KΩ, C = 1μF = 10-6 F ω = 2 Π f = 2 x 3.14 x 50 = 314 rad/sXC = 1/ωC = 1/(314 x 10-6) = 106/314 = 3184.7 = 3.18 K ΩFor the circuit given:Z = R + 1/j ωC = R – j(1/j ωC)Z = 1KΩ - j3.18 KΩ = 103 – j3.18 x 103 ?In terms of magnitude and phase:|Z| = √106 + (3.18)2 x 106 = √11.1 x 106 = 3.33 KΩ Consider the current i:
Treating Sin ωt as the reference zero phaseRationalising:
Then,
This signifies we only require doing one complex number computation. A phasor plot of all currents and voltages concerned is as shown below.
When the driving source voltage is taken as reference V , the current leads this by 72.5o as shown by i in the diagram. The voltage across resistor, VR, should have similar phase as the current i as it is purely real. The voltage across capacitor, VC should lag the current via it by 90o and thus lags the source voltage by 17.5o. Combined Resistive-Inductive Impedance:Let consider an R-L circuit driven by the ac voltage source as shown below. This also comprises resistive and reactive components and has related impedance. Ω = 2 Π ff = 50 Hz
It is as well of interest to establish all the current and voltage relationships that apply to this circuit for comparison.v(t) = Vm sin ωt = Vm <00 taking this as reference.If, R = 200 Ω, L = 500 mH, Vm = 1V and f = 50 HzThen,ω = 2 Π f = 314 rad/sXL = ωL = 314 x 500 x 10-3 = 0.5 x 314 = 157 ΩFor the circuit given the inductor and resistor are in parallel and the source voltage emerges across both and hence:Z = v(t)/i(t) and v(t) = vR(t) = vL(t)The current drawn from supply is shared among the two elements and hence:i(t) = iR(t) + iL(t)Z = v(t)/i(t) = [v(t)]/[iR(t) + iL(t)]And hence,1/Z = [iR(t) + iL(t)]/v(t) = [iR(t)/v(t)] + [iL(t)/v(t)] = (1/ZR) + (1/ZL)1/Z = 1/R + 1/jωLWhere there are just two elements this can be opportunely simplified:1/Z = (ZL + ZR)/ZRZLZ = ZRZL/(ZL + ZR) = (j ωLR)/(R + jωL)Rationalising:
Z = 76.25 + j 97.14 ΩIn terms of phase and magnitude:|Z| = √5814 + 9436 = 123.5 Ω
To calculate the current drawn from the supply:
The current flowing via the resistor should be in phase with the voltage across it, that is the source voltage, v(t), and thus has a phase of zero.|iR| = |v(t)|/R = 1<00/R = 1/200 = 5 < 00 mAThe current flowing via the inductor should lag the voltage across it, that again is the source voltage, v(t), and thus this has a phase of -90o.iL = v(t)/ (ωL L90o) = 1/157 L90o = 6.4 L-90o mA
The phase relationships of all voltages and currents are shown in the phasor diagram below. V, VL and VR all have similar phase which is that of input source voltage, that is treated as the reference zero phase. The current flowing via the resistor R also has similar zero phase. The current via the inductor lags the voltage across it and thus has a phase of -90o. Ultimately the current drawn from the supply, i, is shown lagging the source voltage by 51.78o as computed.
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
tutorsglobe.com physical and chemical basis of heredity assignment help-homework help by online chromosomal basis of inheritance tutors
Main Components of the vacuum cleaner: There are six main components to a standard vacuum cleaner.
tutorsglobe.com virion, viroids and prions assignment help-homework help by online structure of a virus tutors
tutorsglobe.com functions of nucleus assignment help-homework help by online cell organelles tutors
tutorsglobe.com structure of a prokaryotic cell assignment help-homework help by online prokaryotes tutors
The different roles that non-executives are expected to play provide potential for conflict. In developing strategy, co-operation between the executive and non-executive directors is essential.
if the ascertained voltage to the tv receiver circuits in fluctuating frequently, the transistors, capacitors, zanier diodes, lot and ics would be turned defective. to prevent this, a regulated power supply is essential for tv receivers.
www.tutorsglobe.com offers Enhance Readability homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
tutorsglobe.com anaerobic respiration assignment help-homework help by online respiration tutors
theory and lecture notes of transistor inverter applications i, all along with the key concepts of led buffer, level of current, level shifting circuit and steps of level shifting circuit. tutorsglobe offers homework help, assignment help and tutor’s assistance on transistor inverter applications i.
units of measurement tutorial all along with the key concepts of amount of substance, mole as applied to solid, molarity, molality, normality, normality, standard solution, principle of dilution,
tutorsglobe.com skin assignment help-homework help by online receptor organs tutors
Relieve your academic burden with PhD Digital Circuitry Assignment Help experts at affordable prices and score impeccable grades.
Elastic Constants of Crystals tutorial all along with the key concepts of Analysis of elastic strains and stresses, Dilation, Shearing strain, Stress Components, Elastic Compliance and Stiffness Constants, Cubic crystal
Four-Vector Formulation of Electrodynamics tutorial all along with the key concepts of Transformation Properties of the Differential Operator, Four-vector Form of Continuity Equation, Four-vector Form of Maxwell's Equations, Transformation of Fields
1942970
Questions Asked
3689
Tutors
1487377
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!