Introduction:
The reactions in which substances experience changes in oxidation number are termed to as the oxidation-reduction reactions or redox reactions. Oxidation is stated as an algebraic increase in the oxidation number, or a procedure in which the electrons are lost. Reduction is stated as an algebraic reduction in oxidation number or a method in which electrons are gained. Oxidation-reduction methods should take place concurrently. The species which gains electrons is termed as the oxidizing agent, thus it is reduced. The species which loses electrons is termed as the reducing agent, thus, it is oxidized.
Theory:
Potassium permanganate, KMnO4, is a strong oxidizing agent. Permanganate, MnO4-, is an intense dark purple color. Reduction of the purple permanganate ion to the colorless Mn2+ ion, the solution will turn from dark purple to the faint pink color at equivalence point. No additional indicator is required for this titration. The reduction of permanganate needs strong acidic conditions. In this experiment, permanganate will be decreased by oxalate, C2O42- in acidic conditions. Oxalate reacts very slowly at room temperature therefore the solutions are titrated hot to make the procedure practical. The unbalance redox reaction is illustrated below.
MnO4- + C2O42- → Mn2+ + CO2 (acidic solution)
In part-I of this experiment, a potassium permanganate solution will be standardized against the sample of potassium oxalate. Once the correct normality (eq/L) of the permanganate solution is determined, it can be employed as a standard oxidizing solution. In part-II of this experiment, the standard permanganate solution will be employed to determine the concentration of iron (II) in the ferrous solution (g/L)
The unbalanced redox reaction is illustrated below.
MnO4- + Fe2+ → Mn2+ + Fe3+ (acidic solution)
Phosphoric acid will be employed to make sure that the ferric product, Fe3+ remains in its colorless form.
Experiment:
Equipment and Reagents (Day 1)
Procedure (Day 1):
Part I: Preparation of a 0.1 N KMnO4 Solution.
1) On a centigram balance, weigh around 1.0 g KMnO4 crystals on a piece of weighing paper. Add the crystals to a 500 ml Florence Flask.
2) Add around 350 ml of distilled water to the flask.
3) Heat the solution by occasional swirling to dissolve the KMnO4 crystals. Don't boil the solution. This might take around 30 minutes.
4) Let the solution to cool and stopper. We will require this solution for both day 1 and day 2.
Part-II: Standardization of a KMnO4 solution:
1) On weighing paper, weigh around 0.2 to 0.3g of K2C2O4 H2O on the analytical balance. Record the correct mass. Transfer the sample to a 250 ml Erlenmeyer flask.
2) Rinse and fill the burette by the KMnO4 solution.
3) Add 50 ml of distilled water and 20 ml of 6 N H2SO4 to the oxalate sample in the Erlenmeyer flask. Swirl to dissolve the solids.
4) Heat the acidified oxalate solution to around 85oC. Don't boil the solution.
5) Record the initial burette reading. As KMnO4 solution is strongly colored, the top of meniscus might be read rather than the bottom.
6) Titrate the hot oxalate solution by the KMnO4 solution till the appearance of the faint pink color.
7) Record the final burette reading and compute the volume of KMnO4 utilized in the titration.
8) Remove the titration mixture down the drain and repeat the titration by a new sample of oxalate for a net of 2 trials.
9) The oxalic acid solution might be employed to wash the burette and the titration flask if a brown stain remains in glass-ware.
Computations:
1) By using the half-reaction method, write down a balanced redox equation for the reaction of permanganate by oxalate in the acidic solution.
2) Compute the equivalent weight of the oxalate reducing agent from the molar mass of the oxalate sample and the equivalence of electrons lost via the reducing agent in the oxidation half-reaction.
Equivalent weight = (184 g/mol)/(# of electrons eq/mol)
3) Make use of the sample mass and the equivalent weight to compute the number of equivalents of oxalate in each and every sample.
Equivalence of reducing agent = sample mass g x eq g
At equivalence point, the equivalence of reducing agent is equivalent to the equivalence of the oxidizing agent.
eqred = eqox
4) Compute the normality of the KMnO4 solution from the equivalence of the oxidizing agent and the volume employed in the titration.
5) Compute the average normality of the permanganate solution.
Equipment and Reagents (Day 2):
Procedure (Day 2)
Part III: Determination of the Mass of Iron in a Ferrous Solution
1) Pipet a 25 ml sample of the unknown Fe2+ solution to a 250 ml Erlenmeyer flask.
2) Add 50 ml of distilled water and 12 ml of 6 NH3PO4 into the flask.
3) Fill a burette by the standard KMnO4 solution and record the initial burette reading.
4) Titrate the sample by the standard KMnO4 to a faint pink end-point and record the final burette reading. Compute the volume of KMnO4 used.
5) Remove the ferric solution down the drain and repeat the titration by a new sample of the ferric solution for a net of 2 trials.
6) After all trials, reject the purple permanganate solution in the suitable waste container in the fume hood.
7) Oxalic acid might be employed to remove any brown stains left on the glass-ware.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online Chemistry tutoring. Chat with us or submit request at [email protected]
theory and lecture notes of solving inequalities algebraically and graphically all along with the key concepts of double inequalities, absolute value inequalities-geometric way, polynomial and rational inequalities. tutorsglobe offers homework help, assignment help and tutor’s assistance on solving inequalities algebraically and graphically.
Sexual reproduction, above and beyond producing individuals, introduces variability in the offspring through combining traits of parents.
Preparation of Alkanes and cycloalkanes tutorial all along with the key concepts of Wurtz reaction, Kolbe's electrolytic method, Hydrogenation of Unsaturated Hydrocarbons, Reduction of Alkyl Halides, Decarboxylation of Carboxylic Acids, Preparation of Cycloalkanes, Nitration, Isomerisation
Magnetism tutorial all along with the key concepts of Magnetization, Diamagnetism, Paramagnetism, Ferromagnetism, Curie-Weiss Law, Spontaneous Magnetization, Domain Theory of Ferromagnetism, Bloch Wall, Antiferromagnetism
The key purpose of IAS 10 is to clarify while financial statements should be adjusted for events that occur after the reporting period (or accounting period).
metallurgy tutorial all along with the key concepts of occurrence of metals, beneficiation of ores, froth flotation process, reduction to metals, pyrometallurgy, thermodynamics of reduction process, hydrometallurgy and electrometallurgy
tutorsglobe.com atp as high energy compound assignment help-homework help by online high energy compounds tutors
tutorsglobe.com vitamin deficiency ailments assignment help-homework help by online vitamins tutors
www.tutorsglobe.com offers Data Objects Attributes and Relationships homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
identify the fault provided on tv receiver - very the tv receiver is switched on firstly, there is no picture, raster and sound effects in it., thus it confirms the receiver is within dead fault condition.
tutorsglobe.com role of normal flora assignment help-homework help by online normal flora of the body tutors
ionization energy tutorial all along with the key concepts of factors affecting ionization energies, periodicity in ionization energy across periods, trends in ionization energy down the groups, trends in successive ionization energies
Heat Engines tutorial all along with the key concepts of Basic Operation of Heat Engine, Thermodynamic Efficiency of Real Engines, Efficiency of Otto Engine, Efficiency of Stirling Engine, Heat Flow into Ideal Stirling Engine
tutorsglobe.com thalamus assignment help-homework help by online the brain tutors
Standard enthalpy of formation tutorial all along with the key concepts of Concepts of Standard Enthalpy of Formation, Calculating the Standard Enthalpy of Reaction
1941623
Questions Asked
3689
Tutors
1457396
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!