Introduction
Many techniques are utilized in preparation of coordination complexes and in the transformation of one coordination compound into another. The preparation and reactions of complexes have produced huge research outputs in synthetic inorganic chemistry. Complexes preparation might involve; substitution reaction (replacing one or more ligands with others in a complex), direct reaction (involving only ligand and metal salt without solvent provided the ligand is a liquid or gas), decomposition reaction (where a complex is transformed to another by heating at specific temperature) and redox reaction (where change in oxidation state of the metal may lead to formation of a new complexes). Apart from the diverse techniques stated, a change in reaction conditions such as pH, temperature, solvent polarity can lead to formation of new compound. It is hence significant to learn the diverse ways that complexes can be synthesized.
Preparation and reactions of complexes
For over 2 hundred years, coordination complexes have been generated via a variety of techniques. Among the first few complexes synthesized, Zeise's salt, K[Pt(C2H4)Cl3], known for decades, and Werner's cobalt complexes serve as template for synthesis of abundant complexes known today. Synthetic techniques employed to prepare coordination complexes range from simply mixing of reactants to variation of reaction's conditions and use of non-aqueous solvents. The techniques utilized in preparation of complexes are various and new methods keep emerging due to advancement in technology. Several of such methods will be explained in this Course
i. Direct reaction
This includes amalgamation reaction of metal salt and ligands in liquid or gaseous state. This reaction can as well be carried out in suitable solvent if both reactants are solids. Instances are
The product of the second reaction involving chromium salt is a solid mass that might be hard to handle but through employ of inert solvent as toluene, the product can be simply filtered and dry in purer state. In the third reaction liquid ammonia is employed which can be permitted to evaporate to provide the product.
ii. Substitution reaction
The replacement of one ligand via another is the most common kind of reaction of coordination compounds, and the number of reactions of this kind is huge. Several are carried out in aqueous solutions, several in non-aqueous media, and others can be carried out in the gas phase. Abundant instances of such reactions are general and frequently carried out in qualitative test of cations using aqueous alkali solution or ammonia.
[Ni(CO)4] + 4PCl3 → [Ni(PCl3)4] + 4CO
[PtCl4]2- + NH3 → [PtCl3NH3]- + Cl-
[Cr(CO)6] + 3Py → [CrCl3(Py)3] + 3CO
[Co(NH3)5Cl]2+ + H2O → [Co(NH3)5H2O]3+ + Cl-
[Co(NH3)5H2O]3+ + NCS- → [Co(NH3)5NCS]2+ + H2O
Substitution in square planar complexes of platinum
One observation from a large collection of experimental results is that ligands not undergoing substitution themselves can influence substitution at sites directly opposite them (trans) and, to a lesser extent, at adjacent sites (cis). Examples lie with Pt(II) square planar complexes, where some ligands show strong trans effect, causing ligands directly opposite them to be more readily substituted than those in cis position. ligands opposite a chloro ligand in a square planar platinum complex, are substituted more readily than those opposite an ammine ligand. Experimental studies have produced an order of trans effects for various ligands that coordinate to Pt(II).
CO ∼ CN- > PH3 > NO2- > I- > Br- > Cl- > NH3 > HO- > H2O
The significance of the order is that it can be employ to forecast the products of reactions including Pt square planar complexes and products of other related complexes. In a reaction where a ligand through stronger trans effect then Cl- is present, the chloro trans to this ligand will be substituted instead of chloro ligand that is in cis position to this ligand. The reason is because ligands with stronger trans effect form bonds that are stronger with shorter bond length hence making the ligand opposite them to be weak with longer bond length. This builds such trans ligand more susceptible to substitution. The subsequent instances illustrate the influence of the trans effect. As we know that NH3 has less trans effect there the products of the first 2 reactions are cis as imagined but CO has stronger trans consequence, the product of the last reaction established this.
iii. Reaction of metal salts
Two different metals salts, through appropriate anion that can act as ligand, combine mutually to form complex in these a way that the anion will behave as ligand. Another related reaction is one including a complex and metal salt to generate a new complex.
2AgI + HgI2 → Ag[HgI4]
2[Ni(en)2Cl2] + NiCl2 → 3[Ni(en)2Cl2
iv. Partial decomposition reactions
Such are reactions in that stable complexes are heated to derive out volatile ligands in order to form new complexes. The coordination number might transform and in several cases continue constant. The reactions happen in solid state.
v. Reduction and oxidation reaction
Many coordination complexes can be prepared when a compound of the metal is either diminished or oxidized in the presence of a ligand. The redox reaction can as well happen between 2 complexes where transfer of electron(s) can lead to new complexes. This technique is utilized to prepare complexes of metal ion in unstable oxidation state. For instance Co(III) solution cannot be utilized to prepare its complexes since it is extremely unstable due to its strong oxidizing ability. Complexes of the ion are prepared via oxidation of solution of Co(II) in the presence of ligand. The complexation of the Co(III) assists to prevent reduction of this extremely strong metal ion. Complexes of Cr(III) are as well prepared in similar manner.
[Fe(CN)6]4- + [IrCl6]2- →[Fe(CN)6]3- + [IrCl6]3-
4CoCl2 + 8en + 4en.HCl + O2 → 4[Co(en)3]Cl3 + 2H2O
4CoCl2 + 8en + 8HCl + O2 → 4 trans-[Co(en)3Cl2]Cl.HCl + 2H2O
[Co(NH3)5Cl]2+ + [Cr(H2O)6]2+ + 5H2O → [Cr(H2O)5Cl]2+ + [Co(H2O)6]2+ + 5NH3
[Co(NH3)5CN]2+ +[Cr(H2O)6]2+ + 5H2O → [Cr(H2O)5NC]2+ + [Co(H2O)6]2+ + 5NH3
[Cr(H2O)5NC]2+ → [Cr(H2O)5CN]2+ (fast reaction)
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with an expert at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online chemistry tutoring. Chat with us or submit request at [email protected]
Blood and Tissue protozoa tutorial all along with the key concepts of Trypanosome, Trypanosomiasis, Leishmania, Leishmaniasis, Plasmodium, Malaria, Babesia, Babesiosis, Toxoplasma and Toxoplasmosis
tutorsglobe.com gall stones assignment help-homework help by online digestion tutors
tutorsglobe.com formation of melanin assignment help-homework help by online protein metabolism tutors
Principles of independent assortment tutorial all along with the key concepts of Mendel's Second Law of Inheritance, Genotypes and Mendel's first law
tutorsglobe.com irreversible enzyme inhibition assignment help-homework help by online enzyme inhibitor-concepts tutors
tutorsglobe.com hypersensitivity- delayed type hypersensitivity assignment help-homework help by online classification of hypersensitivity reactions tutors
www.tutorsglobe.com offers answering questions to measures to curb inflation, inflation theory and tutorial and economics assignment help - homework help.
Mineral Processing tutorial all along with the key concepts of What Is Ore, Ore processing methods, Analysis of Ore, Types of method for the processing of ore, Communition, Sizing, Gravity concentration and Dewatering
www.tutorsglobe.com offers software requirement analysis homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
theory of pricing policy and key concepts of uniform pricing, price discrimination, complete price discrimination, direct segment discrimination, bundling and cannibalization, get managerial economics question's answers from tutors.
www.tutorsglobe.com offers other object oriented issues homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
TutorsGlobe.com Organic Chemistry and classification of Organic Molecules Assignment Help-Homework Help by Online Access Chemistry Tutors
tutorsglobe.com chelates assignment help-homework help by online terminologies tutors
Op-Amp Applications tutorial all along with the key concepts of Constant-Gain Multiplier, Multiple-stage Gains, Voltage Summing, Voltage Buffer, Voltage-Controlled Current Source, Current-Controlled Voltage Source, DC and AC Millivoltmeter, Low-Pass Filter, Notch Filter
theory and lecture notes of practical logic characteristics all along with the key concepts of logic voltages, noise immunity, drive capability, switching times, dynamic noise immunity and limitations of transistor circuits. tutorsglobe offers homework help, assignment help and tutor’s assistance on practical logic characteristics.
1940136
Questions Asked
3689
Tutors
1488009
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!