Introduction
Suppose we consider the similar particle as in chapter but this time it is constrained to shift in a rectangular box of dimensions a, b and c in length. Within the box (i.e. between x= 0 and a; y = 0 and b and z = 0 and c), the potential energy is zero. At the walls and everywhere outside the box, the potential is.
Definition of Particle in a Three-Dimensional Box
The Schrodinger wave equation for 3 dimensional (3D) box is
δ2φ/δx2 + δ2φ/δy2 + δ2φ/δz2 + 8 π2m/h2(E-V) φ =0
where and V are (x,y,z).
since V = 0 inside the box, then the equation becomes
δ2φ/δx2 + δ2φ/δy2 + δ2φ/δz2 + 8 π2m/h2Eφ=0
Equation may be solved by writing the wave function as the product of 3 functions, each depending on one coordinate.
φ(x, y, z) = X(x)Y(y)Z(z)
differentiating equation gives
δφ/δx = Y (y) Z (z) δx/δx
δ2φ/δx2= Y (y) Z(z) δ2x/δx2
and by a similar reasoning
δ2φ/δy2 = X (x)Z(z) δ2y/δy2
δ2φ/δz2 = X(x)Y(y) δ2z/δz2
Y(y)Z(z)δ2x/δx2 + X(x)Z(z) ) δ2y/δy2 + X(x)Y(y) δ2z/δz2 + 8 π2m/h2 EX(x)Y(y)Z(z) = 0 dividing all through by Y(y)X(x)Z(z) one obtains
-h2/8 π2 m* 1/X(x) δ2x/δx2 +1/Y(y) * δ2y/δy2 + 1/Z(z) δ2z/δz2 = E
We can write the energy as the sum of three contributions associated with the coordinates.
E = Ex + Ey + Ez
using equation, we can divide the expression attained into 3 equations.
-h2/8 π2 m *1/x δ2x/δx2 = Ex
-h2/8 π2 m *1/y δ2y/δy2 = Ey
-h2/8 π2 m *1/z δ2z/δz2 = Ez
Each of the last three equations is similar to the expression for the particle in a one-dimensional box discussed in chapter. Hence their solutions are respectively:
X = [√(2/a)]sin nπx/a
En,x = n2xh2/8ma2
Y = [√(2/b)]sin nπy/b
En,y = n2y h2/ 8mb2
X = [√(2/c)] sin nπx/c
En,z = n2z h2/ 8mc2
Where a, b, c are length in x, y, z directions, correspondingly. Also, nx, ny, nz are the quantum numbers correspondingly.
Since φ (x, y, z) = X(x)Y(y)Z(z) and E = Ex + Ey + Ez, then
ψ (x,y,z) = √a/v sin(nπx/a) sin(nπy/b) sin(nπz/c)
where V is the volume of the box.
Ex,y,z = h2/δm * n2x/a2 + n2y/b2 [+ n2z/c2]
Whenever the three dimensional box has geometrical symmetry, more interesting results are often obtained. For example, in a cubic box, a = b =c, thus equation becomes
E = h2/ φm(n2x + n2y + n2z)
Suppose nx =3, ny = nz =2, then
Ψ(x,y,z) = [/(8/v)] sin3πx/a* sin2πy/a*sin2πz/a]
E = h2/8ma2(32 + 22+ 22) = 17h2/8ma2
Assuming we have another set of values nx =2, ny =3, nz =2, then
Ψ(x,y,z) = [/(8/v )]sin 2πx/a sin3πy/a sin2πz/a
E = h2/8ma2 (22 + 32+ 22) = 17h2/8ma2
Suppose nx =2, ny =2, nz =3, then
Ψ(x,y,z) = [/( 8/v)]sin2πx/a sin2πy/a sin3πz/a
E = h2/8ma2(22 + 22+ 32) = 17h2/8ma2
Even though such states are different, the values of the energies are the same. The three states are said to be degenerate since they have equal energy.
For a situation where nx = ny = nz = 1, it corresponds to only one state of the system. The same is true of nx = ny = nz = 2, but situations such as nx ≠ ny = nz three degenerate states are obtained as shown in the Figure below.
Fig: Quantized Energy Levels of a Particle in a Cubic Box
Suppose we wish to calculate the transition energy between the levels E2,2.2 and E3,2,1 then the energy difference is calculated as
ΔE = hν = 14h2/8ma2 - 12h2/8ma2 = 2h2/8ma2 = h2/4ma2
Given suitable data, it should be possible for us to calculate the frequency (ν) of the transition between the two states.
Zero point energy
According the old quantum theory, the energy level of a harmonic oscillator is E = hv.
The lowest energy level via n = 0 would have zero energy. Depend on the wave treatment of the system, the energy level corresponds to the state with quantum numbers nx = ny = nz =1. The dissimilarity between such 2 values is termed the zero point energy.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with an expert at https://www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online chemistry tutoring. Chat with us or submit request at [email protected]
Theory and lecture notes of Theory of Common Mode Rejection Ratio II, all along with the key concepts of Mismatch in Gain Determining Resistors, Finite CMRR, Operational Amplifier. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Theory of Common Mode Rejection Ratio II.
www.tutorsglobe.com offers cartesian coordinate homework help, cartesian coordinate assignment help, online tutoring assistance, geometry mathematics solutions by online qualified tutor's help.
Chemical Groupings of Polymers with Nomenclature tutorial all along with the key concepts of Addition polymers, Condensation polymers, Cross-linked polymers, Based on the stereochemistry
Analysis of pericyclic reactions tutorial all along with the key concepts of Orbital correlation diagram method, Orbital symmetry diagram, Frontier Molecular Orbital Theory, Reaction conditions for pericyclic reactions, Woodward-Hoffmann rules
tutorsglobe.com choice and utility maximization assignment help-homework help by online intermediate microeconomics tutors
theory and lecture notes of transient response of electrodes all along with the key concepts of transient specification, transient analysis, maximum undershoot limitation and maximum recovery of slope limitation. tutorsglobe offers homework help, assignment help and tutor’s assistance on transient response of electrodes.
microbial interactions tutorial all along with the key concepts of neutralism, mutualism, commensalism, supply of nutrients, amensalism, prey-predator relationship and competition
tutorsglobe.com modern concept of natural selection assignment help-homework help by online theories of evolution tutors
TutorsGlobe.com Reabsorption in Henles loop Assignment Help-Homework Help by Online Mechanism of urine formation Tutors
Hardey-Weinberg Principle tutorial all along with the key concepts of Modern theories of Evolution, Illustrations of the Hardy-Weinberg Principle, Derivation of the Hardy-Weinberg Principle, Implications of the Hardy-Weinberg Law
Tapeworms and Examples tutorial all along with the key concepts of Diphyllobothrium latum, Broad Fish Tapeworm, Dipylidium caninum, Dog Tapeworm, Tapeworms of the Genus Hymenolepis
tutorsglobe.com reasons for water scarcity assignment help-homework help by online conservation of water tutors
tutorsglobe.com experiments on photosynthesis assignment help-homework help by online factors affecting photosynthesis tutors
Acetylenes tutorial all along with the key concepts of Acidity of Alkynes, Preparation of Alkynes, Synthesis of Alkynes, Alkylation Reaction and Coupling Reactions
theory and lecture notes of current-voltage relationships all along with the key concepts of influence of drain-source voltage, current-voltage relationships, saturation region and channel length modulation. tutorsglobe offers homework help, assignment help and tutor’s assistance on current-voltage relationships.
1959918
Questions Asked
3689
Tutors
1475703
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!