Introduction:
For a long time, it was assumed that electrons were orbiting the nucleus in the similar manner the planets orbit the sun. We have learned regarding the contributions of Rutherford and Bohr to atomic structure in order to get a model of the atom. Their contributions went a long way to describe some of the observation regarding the atom. The Rutherford's model of an atom as comprising of a central positively charged nucleus and the negatively charged electrons a few distance away from the nucleus, is still satisfactory. Though, classical electromagnetic theory refuses the possibility of any stable electron orbits around the nucleus.
In Bohr's model of the atom, the electron was limited to being found in definite areas that is, it had to be found in that orbit and nowhere else. In the Wave Mechanics Model, though, there is a slight chance which the electron might be positioned at distances other than in the restricted orbits. In spite of this, we still accept Bohr's scheme for quantization of energy in the atom and that the lowest energy level of the atom is mainly stable state.
However Bohr's contribution was outstanding, specifically his quantization of energy, theory to describe the spectral lines for hydrogen atom; it consists of the given limitations:
1) The Bohr model failed to account for the frequencies of the spectral lines for the complex atoms other than hydrogen.
2) The model as well failed to satisfactorily describe why the Rutherford's atom didn't collapse as predicted through the theory of electromagnetic radiation.
The present day image of the atom is mainly based on wave mechanical or quantum mechanical treatment. The treatment imitates on the wave-nature of the electron and the quantization of energy in the atom. However such treatments are basically mathematical in nature, it explains the electron as point charge and that the density of the cloud at a particular point gives only the probability of determining electrons at that point.
Quantum Theory of Atomic Orbitals:
In case of quantum model, the atom is still assumed to comprise of a central nucleus and orbiting electrons however the physical picture of the atom is by far dissimilar from the models stated by Rutherford and Bohr. The quantum theory tries to comprehend how electrons are arranged in the atom based on wave and quantum mechanics treatment. The electron is visualized as a point charge. The density of this point charge differs in various locations around the nucleus and gives a measure of the probability of determining the electron at a particular point.
The region or space, around the nucleus, in which the electron in a particular energy level is most possibly or probable to be found is stated as an orbital. Therefore instead of explaining a fixed Bohr orbit in which the electrons are located, the modem theory gives a probability explanation of atomic orbitals. The outcome of the quantum mechanical treatment of the atom is illustrated below.
The principal quantum number (n):
You will remember that in the Bohr's model, each and every orbit is symbolized by the principal quantum number. This designation is retained in the quantum model however to symbolize distinct energy levels and not shells or orbits.
In another words, the quantum model recognizes various quantized energy levels around the nucleus. Each and every principal quantum number (n) corresponds to a specific energy level and consists of integral values of 1, 2, 3, 4 and so on. The principal quantum number n = 1 symbolize the lowest energy level that an electron can occupy. Electron having the largest (n) value consists of the most energy and occupies the highest energy level; and thus the most easily removable or ionisable electron. The maximum possible number of electrons in an energy level is represented by 2n2. (n ≥ 1)
The subsidiary or azimuthal quantum number, (l):
This subsidiary quantum number illustrates how many energy sub-levels are present in each and every electronic energy level. The subsidiary quantum number, l, consists of integral values ranging from 0, 1, 2... (n-1). The sub-levels having l = 0, 1, 2, 3, are generally termed to s-, p-, d- and f- sub-levels correspondingly.
The magnetic quantum number, (M):
The magnetic quantum number (m) represents the number of orbitals present in each and every sub-energy level and consists of integral values ranging from - l ...0 ....+ l. For illustration, if l = 2, m consists of the values - 2, - 1, 0, 1, 2, that is, the l = 2 sub-level (d-sublevel) consists of five orbitals; if l = 1, m consists of the values - 1, 0, 1 that is, l = 1 sub-level (p- sub-level) consists of three orbitals (Observe the table).
The spin quantum number (s):
The spin quantum number, (s) illustrates the fact that each and every orbital can just hold a maximum of two electrons having opposite spin. Their spin states are represented by the spin quantum numbers -1/2 and +1/2.
Table: Atomic energy levels and sub-levels
Value of n
Values of l
Number of sub-levels
Names of the sub-levels
1
0
One
s
2
0 and 1
Two
s and p
3
0, 1 and 2
Three
s, p and d
4
0, 1, 2 and 3
Four
s, p, d and f
Shape of Atomic Orbitals:
On contrast to Bohr's postulate, electrons don't move around the nucleus in definite paths; however it is not possible to precisely find out the path of the electron. Instead, the location of electron is stated in terms of probabilities which are illustrated by the orbital. A region in space where there is a high probability of determining an electron in an atom is termed as an orbital. The density cloud of electrons states the shape of the orbital.
The electrons which move about to form a spherical symmetrical cloud around the nucleus is an s-electron residing in the s-orbital. The p-electrons move about three axes, x, y and z that is at right angles to one other, generating a dumb-bell cloud around the nucleus all along each axes. They are termed as the p-orbitals and are differentiated from one other by Px, Py and Pz in line by the direction of the electron cloud. The figure shown below illustrates the shapes of S, Px, Py and Pz orbitals. The geometrical representation of the d and f orbitals are more complicated and beyond the scope of this program.
Fig: Geometrical representation of s- and p- orbitals
Electronic Configuration of Atoms - Orbital Model:
The quantum treatment mainly deals by the arrangement of electrons in atoms. Though, before we can apply the quantum numbers to deduce the electronic configuration of atoms, there are two significant rules that you must be well-known with.
1) Pauli Exclusion Principle defines that two electrons in the similar atom can't have the similar values for all the four quantum numbers. The principle simply signifies two electrons in an atom can't behave in a similar way.
2) Hund's Rule; defines that, in the filling of orbitals, electrons engage each energy level singly prior to electron pairing occurs.
The manner in which electrons are arranged in an atom is found out by the order of the sub-levels on a scale of increasing energy level. This is so as electrons are found in the lowest possible energy level, the ground state that is the most stable state of an atom. A simple representation of the orbitals on an energy scale is symbolized in the figure given below:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 4f - increasing energy
Fig: Atomic orbitals on an energy scale
The maximum number of electrons in each and every sub-level is found out by the number of orbitals present in the sub-level bearing in mind that each and every orbital can take a maximum of two electrons having opposite spin. Table represents the number of orbitals and maximum number of electrons in each and every sub-level.
Table: The number of orbitals and maximum electrons in the sub-level
Value of l
Name of sub-level
Values of m
Number of values of m
Number of orbitals
Maximum number of electrons
p
1, 0, -1
6
d
2, 1, 0, -1, -2
Five
10
f
3, 2, 1, 0, -1, -2, -3
Seven
14
Beginning with hydrogen, which consists of an atomic number of 1, the electron occupies the 1s sub-level and this procedure of electronic occupation continues by the increased atomic number according to the order of increasing orbital energy levels. To carry on a check on the spin of the electron, arrows of opposite spins are employed to differentiate two electrons in an orbital. The table represents the electronic configuration of the first 10 elements by using the four quantum numbers.
Table: Electronic configurations of the atoms of elements using the four quantum numbers.
Electronic Configuration and Periodic Classification of Elements:
One of the benefits of the electronic configuration of elements by employing quantum numbers is that it illustrated the basis for the periodic categorization of element. In another words, the key to the periodicity of elements lies in the electronic configurations of their atoms.
The orbital arrangement of electrons clearly exhibited that the great worth of the Period Table as it describes the groups and characteristic properties of elements.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online chemistry tutoring. Chat with us or submit request at [email protected]
theory of elasticity and key concepts of elasticity of demand, income elasticity, cross section, own-price elasticity, cross-price elasticity, dependent variable, arc approach, advertising elasticity, independent variable, point approaches, short run, multiple regressions, elastic, long run, time series and inelastic
Method of analysis of lipids tutorial all along with the key concepts of Physical properties of lipids, Chemical properties of lipids, Acid value, Iodine value, Functions of lipids, Analyses of lipids and Extraction of lipids
while hot water is needed just at one service point, this type is employed. it holds water of low pressure and therefore is termed as non-pressure type.
boost your grades and future with reliable wellness and lifestyle analysis assignment help. we deliver a++ solutions within deadline!
Theory and lecture notes of Arithmetic Sequences all along with the key concepts of arithmetic sequences, Partial Sum of an Arithmetic Sequence, Common Difference and General Term of Arithmetic Sequences. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Arithmetic Sequences.
radioactivity and binding energy of nuclei tutorial all along with the key concepts of properties of nucleus, binding energy per nucleon, mass defect, nuclear stability, radioactive decay law, half-life, radioactive series, accelerators and detectors
tutorsglobe.com transfer rna assignment help-homework help by online structure of rna tutors
compounds alkali metals tutorial all along with the key concepts of oxides and hydroxides, sulphides, hydrides, carbides, thermal stability of salts
tutorsglobe.com laboratory diagnosis of brucellosis assignment help-homework help by online brucellosis tutors
are strict deadlines giving sleepless night? get accounting for intangible assets assignment help from phd tutors and score well!
Theory and lecture notes of hillips Curve and Expectations all along with the key concepts of Static Expectations of Inflation, Pressure Economy under Adaptive Expectations, Accelerating Inflation, Volcker Disinflation. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Phillips Curve and Expectations.
tutorsglobe.com krebs cycle assignment help-homework help by online plant physiology tutors
Air Pollution tutorial all along with the key concepts of Air Pollution-Past, Present and Future, Major Air Pollutants-their sources, Ozone, Carbon monoxide, Airborne carcinogens, Hydrocarbons, Cigarette smoking
contingency tables tutorial all along with the key concepts of chi-square distribution, properties of chi-square, chi-square testing, chi-square testing procedure
just as the beam scans the target plate, the beam encounters dissimilar positive potentials on the side of the photo layer which faces the gun.
1953274
Questions Asked
3689
Tutors
1490251
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!