Introduction:
Carbohydrates are a big class of naturally occurring polyhydroxy aldehydes and ketones or compounds which yield polyhydroxyl aldehydes or ketones on hydrolysis. They have just carbon, hydrogen and oxygen atoms. They encompass the general formula CxH2yOz.
Simple carbohydrates are mostly synthesized via chlorophyll having plants via photosynthesis.
Classification of Carbohydrates:
Based on the size of the molecules, carbohydrates might be categorized into three groups, namely monosaccharides, disaccharides and Polysaccharides.
Monosaccharides are the simplest carbohydrates and they are termed as simple sugars. They encompass the general formula C6H12O6. They can't be hydrolyzed to simpler compounds. They are the fundamental unit of carbohydrates. They encompass three to seven carbon atoms, and each consists of one aldehyde or one ketone functional group. The aldehyde group is for all time at the end of the carbon chain; the ketone group is always on the second carbon of the chain. In either case, there is a -CH2OH group at the other end of chain.
There are hydroxyl groups on the entire carbon atom and the -CH2OH at the other end, and on the end carbon subsequent to the ketone group.
Fig: Carbohydrates Classification
Disaccharides comprise of two monosaccharide units joined altogether via a glycosidic bond. Their general formula is C12H22O11. Example: sucrose, maltose and lactose. Whenever one molecule of disaccharides is taken via acid hydrolysis, it results in two monosaccharide molecules.
Polysaccharides are the condensation polymers of monosaccharides; they have thousands of monosaccharide units in their structures. They encompass the general formula (C6H10O5)n, here 'n' is a very large number. On the acid hydrolysis polysaccharides result a large number of monosaccharide molecules, example: cellulose, starch, insulin and glycogen. Polysaccharides are further sub-categorized into Homopolysaccharides and Heteropolysaccharides. The Homopolysaccharides on hydrolysis produce the similar molecule as Heteropolysaccharides produce various monosaccharides. Starch and cellulose are Homopolysaccharides as insulin is a Heteropolysaccharides.
Carbohydrates which reduces Fehling's (or Benedict's) or Tollens' reagent are termed as reducing sugars. All the monosaccharides whether aldose or ketose are the reducing sugars. Most of the disaccharides are reducing sugars. Sucrose though is a non-reducing sugar.
Fig: Classes of Carbohydrates with examples
Monosaccharides:
Monosaccharides might be an aldose or a ketose. The aldose is a monosaccharide having an aldehyde carbonyl group whereas a ketose includes a ketone structure.
Naming Monosaccharides:
The family name ending '-ose' points out a carbohydrate, and simple sugars are termed by common names such as glucose, ribose, and fructose instead of systematic names. The number of carbon atoms in an aldose or ketose can be specified via one of the prefixes bi-, tri-, tetr-, pent-, hex-, hept-. Therefore, glucose is an aldohexose (aldo- = aldehyde; hex- = six carbons; -ose = sugar); fructose is a ketohexose (that is, a six-carbon ketone sugar); and ribose is an aldopentose (that is, a five-carbon aldehyde sugar). Most of the naturally occurring simple sugars are aldehydes having either five or six carbons.
Fig: Naming Monosaccharides
i) Biose (C2H4O2): Glycolaldehyde (CH2OHCHO) is the simplest hydroxyl aldehyde. This is regarded as an aldobiose. It is not optically active as it doesn't have an asymmetric carbon.
ii) Trioses (C3H6O3): Glyceraldehyde is the mere aldotriose known. It possesses an asymmetric carbon atom and exists in the two optically active forms.
Fig: Trioses
iii) Tetroses (C4H8O2): The aldotetroroses has the formula CH2OHCHOHCHOHCHO; it consists of two asymmetrical carbon atoms. It is thus capable of four optically active forms D- and L- erythrose and D- and L- threose.
A ketose consists of just one asymmetric carbon atom and therefore exists in only two optically active forms D- and L-erythrulose.
Fig: Tetroses
iv) Pentoses (C5H10O5): Aldopentoses consists of 3 asymmetric carbon atoms and thus exists in 8 optically active forms D- and L- forms of ribose, arabinose, xylose and lyxose, D-ribose, L- arabinose, D-xylose and -lyxose take place in nature whereas the others are synthetic.
Fig: Pentoses
v) Hexoses: Aldo hexoses encompass four asymmetric carbon atoms. They encompass the formula CH2OHCHOHCHOHCHOHCHOHCHO; therefore they exist in sixteen optically active forms- D- and L- forms of glucose, mannose, allose, altrose, gulose, idose, galactose, talose.
Ketohexoses encompass 3 asymmetric carbon atoms and they encompass the formula CH2OHCOCHOHCHOHCHOHCH2OH. They exist in eight optically active forms of which just six- D- and L-fructose, D- and L-sorbose, D-tagalose and L- psicose- takes place in nature.
As well there are sugars having heptoses (7-carbon atoms), octoses (8 carbon atoms) and so forth.
Configuration of Monosaccharides:
Glyceraldehyde includes a central Chiral carbon atom. For each of its optical isomers the (+) and (-) signs pointing out dextrorotatory and laevorotatory correspondingly, specifying the direction in which each one rotates plane polarized light, give no indication of the way in which the groups are linked to the Chiral carbon. The absolute configuration of the two is thus illustrated through placing a D or L in front of the name.
Fig: Configuration of Monosaccharides
As all the monosaccharides are in effect higher homologue of one of the enantiomers of glyceraldehydes, they are termed as D-compound if they are associated to D-glyceraldehydes and L- compounds if associated to L-glyceraldehydes. The comparism to glyceraldehydes is done via considering the lowest Chiral carbon atom.
Occurrence of Monosaccharides:
Most of the monosaccharides exist in nature and most of the others have been synthetically prepared.
General physical characteristics:
a) They are colourless compounds.
b) They are soluble in water however insoluble in ether and other organic compounds.
c) They encompass sweet taste.
d) They char on heating providing a characteristic smell.
e) They are optically active.
Two significant monosaccharides are glucose and fructose. They are hexoses and generally found in fruit juice and honey and are the main constituents of most of the disaccharides and polysaccharides.
Fig: Glucose and Fructose
Glucose:
Glucose is the most significant and the richest monosaccharide. It is the unit of which starch, cellulose and glycogen are made up and it consists of special role in the biological procedures. It can exist in the acyclic and cyclic forms. This is an aldohexose as it contains an aldehyde in its open chain structure.
Fig: Glucose-monosaccharide
Such monosaccharides form rings via the addition of an -OH group of one of their Chiral carbons to the carbonyl group of aldose.
Six-membered rings are chemically more stable than the straight chains of the monosaccharides. The direction from which the -OH adds on to the carbonyl group finds out which one of the two possible cyclic structures forms (α- and β-glucose).
Physical Properties of Glucose:
a) Glucose posses a sweet taste however this is not quite so instantly distinctive in that of fructose and sucrose.
b) Glucose is extremely soluble in water.
c) It is not soluble in alcohol.
d) Whenever crystallized from warm solution at 98oC, it results anhydrous crystals having melting point 146oC, however from cold solution, it makes a monohydrate having melting point 86oC.
Reactions of Glucose:
Glucose goes through numerous reactions typical of carbonyl compounds. As a reducing sugar it reacts by Fehling solution and Tollen's reagent and the formation of osazones gives a helpful means of characterization and identification.
Usually the reactions of sugars give a considerable amount of information regarding the structure of the molecules and this clearly illustrated by glucose in its capability to form α- and β- cyclic glucosides.
a) Oxidation:
Glucose, similar to aldehydes and ketones on warming readily reduces Fehling solution, ammoniacal silver (i) nitrate and Tollen's reagent. It can as well be oxidized through bromine water to Gluconic acid. Though a more powerful oxidizing agent such as trioxonitrate (v) acid will oxidize it to the dicarboxylic acid, glycaric acid.
Fig: Glucose-Oxidation reaction
b) Reduction:
Glucose react by hydrogen and nickel catalyst or sodium tetrahydridoborate (III) or sodium amalgam and water to results hexahydric alcohol, sorbitol.
Fig: Glucose-reduction reaction
Glucose can as well be reduced via hydrogen iodide and red phosphorus at 100oC to give hexane. This reaction proves the existence of a straight chain structure for glucose.
c) Acylation:
Glucose reacts by surplus ethanoic anhydride or ethanoyl chloride in the presence of an anhydrous zinc chloride catalyst to result pentaethanoyl derivative. This reaction points out the presence of five hydroxyl groups in the glucose.
Fig: Glucose-Acylation reaction
d) Addition Reaction of the carbonyl group:
i) Reaction with HCN:
Glucose reacts by HCN to provide hydroxynitrile (cyanohydrins). However do not react by sodium hydrogen sulphite. Whenever the hydroxylnitrile formed is taken via acid hydrolysis followed through reduction with hydriodic acid, heptanoic acid is made. This reaction as well points out the existence of a straight chain structure.
Fig: Glucose reaction with HCN
ii) Condensation reactions of the carbonyl group:
Hydroxylamine and hydrazine condenses by glucose to make an oxime and a hydrazone correspondingly.
Fig: Condensation reactions of the carbonyl group
e) Glucoside Formation:
Glucose reacts by methanol to make a crystalline solid that includes only one methyl group. This compound formed doesn't have aldehyde group as it doesn't reduce Fehling solution or form oxazone with the phenylhydrazine and it exist in two anomeric forms.
This behavior of glucose can merely be accounted for in terms of the α- and β- cyclic structures being in the dynamic equilibrium.
Fig: Glucoside Formation
f) Fermentation:
Glucose, throughout fermentation react by the enzyme zymase from yeast at 15oc to make ethanol and carbon (iv) oxide.
C6H12O6 + (zymase at 15oC) → 2CH3CH2OH + 2CO2
g) Dehydration:
Glucose, whenever strongly heated chars and leave a black carbon residue. Alternatively if treated by concentrated tetraoxosulphate (vi) acid, it sugar charcoal.
C6H12O6 + (conc.H2SO4/- H2O) → 6C
Glucose Sugar charcoal
Fructose:
Fructose occurs broadly in fruits and combined with glucose, in the disaccharide, sucrose. It is often termed as fruit sugar.
Physical Properties of Fructose:
a) This is more soluble in water than glucose.
b) It is the sweetest among all sugars, around two times as sweet as glucose.
c) It is reasonably soluble in alcohol dissimilar glucose. This property can be used in separating it from glucose.
d) It is a colourless crystal having the melting point of 95oC
Structures of Fructose:
Fructose can exist by an acyclic and also with cyclic structures of six-membered ring and five membered rings. This is a ketohexose as it includes a keto group in its open chain structure.
Fig: Structures of Fructose
In the crystalline form, just one form of fructose is known- the six membered, cyclic, β- isomer.
In solution, the β-isomer exists in equilibrium by the cyclic α-isomer, with the open-chain structure and as well having a five membered ring structure. The α- and β- isomer varies in configuration of the C-2 atom, that is, at the carbonyl atom of the acyclic structure. This phenomenon is termed as epimerism and the isomers are termed as epimers.
The six membered ring structures are termed as a fructopyranose whereas the five membered rings are termed as a fructofuranose. Usually, sugars that have a six-membered ring structure comprising the oxygen atom termed to as pyranose compounds and those having a five-membered ring structure are termed as furanose compounds.
Reactions of Fructose:
Fructose goes through reactions which are similar to those of glucose.
Fructose similar to glucose reduces the Fehling's solution, ammoniacal silver (I) nitrate and Tollen's reagent. It is not however not oxidized via bromine water pointing out the absence of an aldehyde group.
Fructose such as glucose is as well reduced to sorbitol.
Fructose undergoes acylation as illustrated in glucose to result pentaethanoyl derivative, pointing out the presence of five hydroxyl groups in the molecule.
d) Addition and Condensation Reactions of the carbonyl group:
Similar to glucose, fructose forms hydroxylnitrile (that is, cyanohydrin) having hydrogen cyanide and condenses by hydroxylamine and hydrazine. Whenever Fructose is warmed with the excess phenylhydrazine, it results an osazone, fructose phenyl osazone that is identical to the glucose derivative.
e) Fermentation and Dehydration:
Fermentation and dehydration of fructose is identical to that of glucose.
Disaccharides:
Disaccharides are carbohydrates which are made up of two monosaccharide units. They encompass the molecular formula C12H22O11. On hydrolysis a molecule of disaccharide results in two molecules of monosaccharide. Common illustrations are sucrose (like cane or beet sugar), maltose (like malt sugar) and lactose (like milk sugar).
Sucrose is prepared of a glucose molecule and a fructose molecule, a maltose comprise of two glucose molecules whereas lactose is prepared of one glucose molecule and one galactose molecule.
Natural Sources of Disaccharides:
Sucrose occurs in as much as around 15% in cane and beet sugar that is the principal source. Apart from cane and beet sugar, it takes place naturally in fruit and plants. Maltose is made up as an intermediate in the fermentation of starch whereas lactose is present in the milk of mammal in around 5%.
Structure and constitution of Disaccharides:
The bond made between two monosaccharides is termed as a glycosidic linkage. This is formed from a condensation reaction among the two hydroxyl groups.
Disaccharides are glycosides in which the alcohol substituent is replace by the other monosaccharide that is attached through one of its hydroxyl groups. Sucrose is prepared by glucose molecule and a fructose molecule by the elimination of a water molecule-a pyranose and a furanose ring. The maltose molecule is built up from the two glucose molecules by the removal of a water molecule-two hexose (pyranose).
Maltose and lactose molecules comprise of two hexose (or pyranose) units whereas sucrose consists of a hexose-pyranose, that is, pyranose-furanose structure.
Fig: Structure and constitution of Disaccharides
Maltose and lactose exist in the α- and β- forms and they go through mutarotation in solution, whereas sucrose doesn't exist in anomeric forms. Maltose and lactose are able of reducing the Fehling solution and forming osazones pointing out that the structures of the molecules have a potentially 'free' carbonyl group and a hemiacetal ring structure whereas sucrose is a non-reducing sugar, pointing out the absence of a 'free' carbonyl group.
Physical properties of Disaccharides:
a) Sucrose, maltose and lactose are readily soluble in the water.
b) They are virtually insoluble in alcohol.
c) Sucrose, maltose and lactose are dextrorotatory and are employed as food-stuffs.
d) If sucrose is heated above 160oC (its melting point), and cooled, it re-solidify to make a solid mass termed as 'barley sugar'. On increasing the temperature to around 200oC, it lost some water molecule to make 'caramel'- a softer, brownish substance.
Reactions of Disaccharides:
Considering the common illustrations, most of their reactions are useful means of differentiating between them.
a) Hydrolysis:
All the disaccharides are hydrolyzed through dilute mineral acid to the constituent monosaccharides. Maltose only provides glucose; lactose provides glucose and galactose whereas sucrose provides glucose and fructose.
C12H22O11 + H2O + (dil. acid or maltase) → 2C6H12O6
Maltose Glucose
C12H22O11 + H2O + (dil. acid or lactase) → C6H12O6 + C6H12O6
Lactose Glucose Galactose
C12H22O11 + H2O + (dil. acid or invertase) → C6H12O6 + C6H12O6
Sucrose Glucose Fructose
Sucrose that is dextrorotary on hydrolysis gives an equivalent proportion of (+) -glucose and (-) - fructose having specific rotations + 52.7o and -92.4o correspondingly. As the laevorotatory power of fructose is more than the dextrorotatory power of glucose, the overall mixture formed is thus laevorotatory. Therefore the rotation of plane polarized light changes from positive to negative whenever sucrose is hydrolyzed. This is termed as the inversion of (+) -sucrose.
(+) -Sucrose → (H+ or invertase) → (+)-glucose + (-)-fructose
[α]D = +66.5o [α]D = +52.7o [α]D = -92.4o
[α]D = -19.9o
b) Oxidation:
Maltose and lactose are influenced through Fehling's solution; ammoniacal silver (I) nitrate and bromine water whereas sucrose is not. This is as sucrose consists of no 'free' carbonyl group. Bromine water oxidizes maltose and lactose to maltobiotic acid and lactobiotic acid correspondingly.
Though, whenever sucrose is warmed by more powerful oxidising agent such as dilute trioxonitrate (V) acid, it is oxidized to ethanedioic acid (that is, oxalic acid).
Sucrose, maltose and lactose react by ethanoic anhtdride on heating to give an octaethanoyl derivative. This reaction proves the presence of eight hydroxyl groups.
d) Condensation:
Maltose and lactose reacts by phenylhydrazine to form phenylhydrazone. Sucrose doesn't go through this reaction because it lacks reducing power and consists of no carbonyl group.
e) Dehydration:
All disaccharides results sugar charcoal whenever heated above their melting points or whenever they are warmed by concentrated tetraoxosulphate (VI) acid.
C12H22O11 + (conc.H2SO4/-11H2O) → 12C
Polysaccharides:
Polysaccharides are high relative molecular mass condensation polymers of monosaccharides. They encompass the general formula (C6H10O5)n, here 'n' is a large number. They include a large number of monosaccharide units linked altogether in the similar manner as disaccharides by means of the common linking oxygen atom.
Usually polysaccharides are tasteless and amorphous compounds. They are usually insoluble in the water and organic solvents. Most of them form colloidal solution. Whenever they are hydrolyzed by dilute acids or enzymes they result in monosaccharides.
Common illustrations of polysaccharides are starch and cellulose. Insulin and glycogen are as renowned polysaccharides.
Starch:
Starch is a polyglucose found out in potatoes, rice, wheat, maize, barley and usually in green plants. In nature it is converted into complex polysaccharides such as gums and cellulose. This can as well be transformed into simpler mono and disaccharides via enzymic actions.
The correct chemical nature of starch differs from source to source. Starch acquired from the similar source has been found to comprise of two fractions: amylase and amylopectin.
Amylose is a linear polymer having α-D-glucopyranose units joined via 1, 4-α-glycosidic linkages whereas amylopectin is a highly branched polymer. The branches of amylopectin comprise of 20 to 25 glucose units joined via 1,4-α- linkages and joined to one other via 1,6-α- glycosidic linkages.
Fig: Starch-amylase and amylopectin
A) General Properties of starch:
a) Physical Properties
b) Chemical Properties:
=> Uses of starch:
Cellulose:
This is the principal structural component of the cell walls of plant. Similar to starch, it is a polyglucose having 1000-1500 glucose units. It is obtained from the cotton plant, wood, straw and so on. Cellulose plays a very important role in the polymer industry.
Fig: Cellulose
Similar to starch, the structure of cellulose differs by the source.
Cellulose is a linear polymer containing β-D-glucopyranose units joined through 1,4-β-linkages.
On complete hydrolysis it results in glucose however unlike starch it is present in cellulose as β-D- glucopyranose unit. Enzymatic hydrolysis results in a disaccharide cellobiose having the glucose linked via 1,4-β-glycosidic linkages.
A) Properties of Cellulose:
B) Uses of Cellulose:
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online Chemistry tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com financial accounting standards boards assignment help-homework help by online financial accounting or gaap principles tutors
Theory and lecture notes of LU Decomposition all along with the key concepts of lu decomposition, linear algebra, Using LU to solve equations. Tutorsglobe offers homework help, assignment help and tutor’s assistance on LU Decomposition.
Want to diminish your academic troubles? Contact France 1715 to the Present Assignment Help tutors today and score A++ grades!
tutorsglobe.com cell membrane assignment help-homework help by online biochemistry tutors
www.tutorsglobe.com offers Comments on Factory Overheads homework help, assignment help, case study, writing homework help, online tutoring assistance by accounting tutors.
Chemotherapeutic Agent tutorial all along with the key concepts of Antibacterial Chemotherapeutic Agents, Antifungal Chemotherapeutic Agents and Antiviral Chemotherapeutic Agents
tutorsglobe.com aids assignment help-homework help by online microbiology tutors
tutorsglobe.com fiber plant-cotton assignment help-homework help by online economic importance tutors
tutorsglobe.com division eumycota assignment help-homework help by online classification of fungi tutors
tutorsglobe.com fresh water crisis and management assignment help-homework help by online environmental science tutors
Working Mechanics of Integrated Accounting System - Main Accounts, Stock Control Accounts, Cost of Sales Account, Assets Accounts, Cost Center Account, Cash Account.
Theory and lecture notes of Hierarchical locks all along with the key concepts of hierarchical locks, homework help, assignment help, lock management. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Hierarchical locks.
in drawing this type of winding, the slots that are numbered from 1 to 12 and the long and short sides are alternatively drawn.
tutorsglobe.com operating cycle concept of working capital assignment help-homework help by online concept of working capital tutors
tutorsglobe.com economic importance of bryophyte assignment help-homework help by online bryophytes tutors
1935415
Questions Asked
3689
Tutors
1489022
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!