--%>

Who developed a rigorous theory for Brownian motion

Who developed a rigorous theory for Brownian motion?

E

Expert

Verified

In 1923 Wiener Norbert developed a rigorous theory for Brownian motion.

   Related Questions in Mathematics

  • Q : Econ For every value of real GDP,

    For every value of real GDP, actual investment equals

  • Q : Problem on sales and budget XYZ Farm

    XYZ Farm Supply data regarding the store's operations follow: • Sales are budgeted at $480,000 for November, $430,000 for December, and $340,000 for January. • Collections are expected

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Row-echelon matrix Determine into which

    Determine into which of the following 3 kinds (A), (B) and (C) the matrices (a) to (e) beneath can be categorized:       Type (A): The matrix is in both reduced row-echelon form and row-echelon form. Type (B): The matrix

  • Q : Problem on Fermats method A public key

    A public key for RSA is published as n = 17947 and a = 3. (i) Use Fermat’s method to factor n. (ii) Check that this defines a valid system and find the private key X.

    Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom

  • Q : State Fermat algorithm The basic Fermat

    The basic Fermat algorithm is as follows: Assume that n is an odd positive integer. Set c = [√n] (`ceiling of √n '). Then we consider in turn the numbers c2 - n; (c+1)2 - n; (c+2)2 - n..... until a perfect square is found. If th

  • Q : Calculus I need it within 4 hours. Due

    I need it within 4 hours. Due time March 15, 2014. 3PM Pacific Time. (Los Angeles, CA)

  • Q : Area Functions & Theorem Area Functions

    Area Functions 1. (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, above the t - axis, and between the vertical lines t = 1 and t = 3. (b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1 between t

  • Q : Problem on inverse demand curves In

    In differentiated-goods duopoly business, with inverse demand curves: P1 = 10 – 5Q1 – 2Q2P2 = 10 – 5Q2 – 2Q1 and per unit costs for each and every firm equal to 1.<