--%>

What is Transition temperature

Transition temperature: The temperature (that is, dependant on the substance comprised) below that a superconducting material conducts electricity with zero resistance; therefore, the temperature above which a superconductor lose its superconductive properties.

   Related Questions in Physics

  • Q : Define Rayleigh criterion or resolving

    Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for

  • Q : Brownian motion Brownian motion   - The

    Brownian motion  - The continuous random motion of a solid microscopic particle whenever suspended in a fluid medium due to the effect of ongoing bombardment by molecules and atoms.  

  • Q : Secondary electron image and back

    What is main difference between secondary electron image and the back scattered electron image? State briefly.

  • Q : Explain Lamberts laws or Lamberts

    What is Lamberts laws or Lamberts first law, second law and third law: Lambert's laws (J.H. Lambert) Lambert's first l

  • Q : What is Cherenkov radiation Cherenkov

    Cherenkov radiation (P.A. Cherenkov): The radiation emitted by a huge particle which is moving faster than light in the medium via which it is travelling. No particle can travel faster than the light in vacuum, however the speed of light in other medi

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Define Joule or SI unit of energy Joule

    Joule: J (after J.P. Joule, 1818-1889): The derived SI unit of energy stated as the quantity of work done by moving an object via a distance of 1 m by exerting a force of 1 N; it therefore has units of N m.

  • Q : Nuclear Physics Homework Help NUCLEAR

    NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : Physics Assignement Answers and

    Answers and explanation to all the questions.