What is Super fluidity
Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.
Chandrasekhar limit (S. Chandrasekhar; 1930): A limit that mandates that no white dwarf (a collapsed, degenerate star) can be much massive than around 1.4 masses solar. Any of the degenerate mass more massive should inevitably collaps
Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space. N
Ultraviolet catastrophe: It is the shortcoming of Rayleigh-Jeans formula that attempted to explain the radiance of a blackbody at different frequencies of the electromagnetic spectrum. This was clearly wrong since as the frequency rose, the radiance r
Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous
Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),
Lyman series: The sequence that explains the emission spectrum of hydrogen whenever electrons are jumping to the ground state. Each and every line is in the ultraviolet.
Tau-theta paradox (1950s): Whenever two distinct kinds of kaons, tau and theta (nowadays tau refers to a totally different particle) decay, tau decays into three particles, whereas the theta decays into two. The tau and theta vary onl
Malus' law (E.L. Malus): The light intensity I of a ray with primary intensity I0 travelling via a polarizer at an angle theta among the polarization of the light ray and the polarization axis of the polarizer is specified by: Q : What is Geometrized units Geometrized Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often. Q : What is Hawking temperature Hawking Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).
Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often. Q : What is Hawking temperature Hawking Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).
Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).
18,76,764
1941762 Asked
3,689
Active Tutors
1457949
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!