--%>

What is Standard quantum limit

Standard quantum limit: It is the limit obligatory on standard techniques of measurement by the uncertainty principle in quantum mechanics.

   Related Questions in Physics

  • Q : Problem on dot equivalent Obtain the

    Obtain the “dot” equivalent for the circuit shown below and use it to find the equivalent inductive reactance. 2141_dot.jpg

    Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac

  • Q : Define Grandfather paradox Grandfather

    Grandfather paradox: The paradox proposed to discount time travel and exhibit why it violates causality. State that your grand-father makes a time machine. In the current time, you employ his time machine to go back in time a few decades to a point be

  • Q : What do you mean by the term alloy What

    What do you mean by the term alloy? Briefly illustrate it.

  • Q : What is curvilinear motion What do you

    What do you mean by the term curvilinear motion? State in brief?

  • Q : Procedure to define the Specific Gravity

    Briefly explain the procedure to define the Specific Gravity?

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?

  • Q : Define Pauli Exclusion Principle Pauli

    Pauli Exclusion Principle (W. Pauli; 1925): No two similar fermions in a system, like electrons in an atom, can contain an identical set of the quantum numbers.

  • Q : Define Permittivity of free space or

    Permittivity of free space: electric constant; epsilon_0: The ratio of the electric displacement to the intensity of the electric field generating it in vacuum. It is equivalent to 8.854 x 10-12 F/m.

  • Q : What is balmer series Balmer series (J.

    Balmer series (J. Balmer; 1885): An equation that explains the emission spectrum of hydrogen whenever an electron is jumping to the next orbital; four of the lines are in visible spectrum, and the remainder (residue) are in the ultraviolet.