--%>

What is Spectroscopy?

This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spectroscopy is the measurement and interpretation of electromagnetic radiation absorbed or emitted when the molecules, atoms, or ions of a sample move from one allowed energy to another. These allowed energies have been used throughout in our interpretation of the thermodynamic properties of materials. Grouped here and in the following are treatments of various experimental methods that give information on the geometry and electronic structures of molecules. The difficulties encountered in the applications of a completely theoretical approach to molecular bonding and structure lead one to refer frequently to experimentally determined properties in order to understand molecular phenomena. Now the origin of the values used there for the spacing of so
e of the energy levels will be seen. Our principal concern is molecular spectroscopy that stems from changes in the rotational, vibrational and the electronic energies. In addition, energies not considered in our thermodynamic studies, resulting from energy differences that arise when a sample is placed in a magnetic or electric field, are susceptible to spectroscopic studies. Nuclear-magnetic-resonance (nmr) spectroscopy and electron-spin-resonance (esr) spectroscopy illustrate such studies. 

   Related Questions in Chemistry

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Problem on thermodynamic equilibrium In

    In the manufacture of sulphuric acid by the contact process, S02 is oxidized to SO3 over a vanadium catalyst: The reactor is adiabatic and operates at atmospheric pressure. The gases enter the reactor at 410&d

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Hybridization Atomic orbitals can be

    Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the

  • Q : What is Spectroscopy? This is a very

    This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spec

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below: