--%>

What is Spectroscopy?

This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spectroscopy is the measurement and interpretation of electromagnetic radiation absorbed or emitted when the molecules, atoms, or ions of a sample move from one allowed energy to another. These allowed energies have been used throughout in our interpretation of the thermodynamic properties of materials. Grouped here and in the following are treatments of various experimental methods that give information on the geometry and electronic structures of molecules. The difficulties encountered in the applications of a completely theoretical approach to molecular bonding and structure lead one to refer frequently to experimentally determined properties in order to understand molecular phenomena. Now the origin of the values used there for the spacing of so
e of the energy levels will be seen. Our principal concern is molecular spectroscopy that stems from changes in the rotational, vibrational and the electronic energies. In addition, energies not considered in our thermodynamic studies, resulting from energy differences that arise when a sample is placed in a magnetic or electric field, are susceptible to spectroscopic studies. Nuclear-magnetic-resonance (nmr) spectroscopy and electron-spin-resonance (esr) spectroscopy illustrate such studies. 

   Related Questions in Chemistry

  • Q : State octet rule in chemistry Explain

    Explain what is octet rule in chemistry?

  • Q : Explain Phase Rule The relation between

    The relation between the number of phases, components and the degrees of freedom is known as the phase rule. One constituent systems: the identification of an area on a P-versus-T with one phase of a component system illustrates the two degrees of freedom that

  • Q : Question related to colligative

    The colligative properties of a solution depend on: (a) Nature of solute particles present in it (b) Nature of solvent used (c) Number of solute particles present in it (d) Number of moles of solvent only

  • Q : How can enzymes act as catalyst?

    Enzymes are complex proteinous substances, produced by living bodies, such as act as catalysis in the physiological reactions. The enzymes are, also called biochemical catalysts and the phenomenon is known as bio-chemical catalysis because numerous reactions that occur the bodies of animals and p

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05

  • Q : Haloalkane how haloalkane can be

    how haloalkane can be prepared by refluxing alcohol with hydrohalic acids

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi