--%>

What is ortho effect?

Orthosubstituted anilines are generally weaker bases than aniline irrespective of the electron releasing or electron withdrawing nature of the substituent. This is known as ortho effect and may probably be due to combined electronic and steric factors.

The overall basic strength of ortho, meta and para substituted anilines, however, depends upon the electron,-donatingelectron-withdrawing resonance effect as well as inductive effect as discussed below:

(a) If the substituent has electron withdrawing inductive (-I) as well as resonance (-R) effect. Then all the substituted anilines are weaker bases with ortho isomer being the weaker base. Then m-isomer in this case is relatively stronger base because R-effect does not operate at m-positive. For example, basic strength of o, p, m-nitro anilines are given as follows:

(b) If the substituent has electron donating inductive (+I) as well as electron donating resonance (+R) effect, then among the substituted anilines, the ortho substituted anilines are weaker bases than aniline whereas p- and m- isomers are relatively stronger bases. However, the p-isomer is still stronger than m-isomers. This is clear from the basic strength of toluidines as given below:

(c) If a substituent has electron donating resonance effect (+R) but electron withdrawing inductive effect (-I), the overall basic strength depends upon the relative predominance of R-effect or I-effect.

(i) When a substituent has strong (+R) effect and weak (-I) effect (For example, -OCH3 group). At meta-position it exerts only (-I) effect causing base weakening effect. Among o- and p-isomers, ortho isomer is weaker base than aniline due to ortho effect while para-isomer is stronger base than aniline due to dominance of + R effect. The basic strength of o-, p- and m-anisidines are as under:

Similar trends are observed in amino-phenols with any ortho aminophenol is stronger base than aniline due to stabilization of o-hydroxy anilinium ion because of intramolecular H-bonding. The basic strengths of aminophenols are as under:

-NH2 group has much stronger (+R) effect and much weaker (-I) effect than -OH group and -OCH3 groups. The decreasing order of basic strengths of phenylenediamines is as given below:

(ii) when the substituent has a weak +R effect but a strong -I effect Chloro group (-Cl) is common example. Since -I- effect outweighs the +R effect, therefore, all the three o-, m- and p- chloroanilines are weaker bases than aniline. However, due to ortho-effect, o-chloroaniline is the weakest base. Further in p-chloroaniline is the weakest base. Further in p-chloroaniline both +R only the -I effect operates; therefore, p-chloroaniline is relatively stronger base than m-chloroaniline. Thus, the basicity of o-, m- and p- chloroanilines relative to aniline follows the sequence as given below:

   Related Questions in Chemistry

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : Question related to colligative

    The colligative properties of a solution depend on: (a) Nature of solute particles present in it (b) Nature of solvent used (c) Number of solute particles present in it (d) Number of moles of solvent only

  • Q : Kinds of insulators Describe all the

    Describe all the kinds of insulators which are present?

  • Q : Particles of quartz Particles of quartz

    Particles of quartz are packed by:(i) Electrical attraction forces  (ii) Vander Waal's forces  (iii) Covalent bond forces  (iv) Strong electrostatic force of attraction Answer: (iii)

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti