--%>

What is Maxwells demon

Maxwell's demon (J.C. Maxwell): A contemplation experiment describing the concepts of entropy. We contain a container of gas that is partitioned into two equivalent sides; each side is in thermal equilibrium with the other. The walls and the separation of the container are ideal insulators.

Now suppose there is a very small demon who is waiting at the separation next to a small trap door. He can close and open the door with slight (negligible) work. Let's state he opens the door to permit a fast-moving molecule to travel from the left side to the right, or for a slow-moving molecule to travel from the right side to the left, and remains it closed for all other molecules. The total effect would be a flow of heat -- from left side to the right -- even although the container was in thermal equilibrium. This is obviously a violation of the second law of thermodynamics.

Thus where did we go wrong? It turns out that information has to do with entropy also. In order to sort out the molecules according to speeds, the demon would be containing to keep a memory of them -- and it turns out that rise in entropy of the maintenance of this simple memory would be more than make up for the reduction in entropy due to the flow of heat.

   Related Questions in Physics

  • Q : Physics Assignement Answers and

    Answers and explanation to all the questions.

  • Q : Calculate time needed for thermocouple

    A thermocouple of K type is suddenly exposed to air with temperature of 1273K, Initial temperature was 293 K. Calculate the time needed for the thermocouple read the temperature with accuracy of better that 99%. Ignore radiation and conduction. The measuring element has a ball shape of diameter o

  • Q : Explain avogadro's hypothesis

    Avogadro's hypothesis (Count A. Avogadro; 1811): Equivalent volumes of all gases at similar temperature and pressure contain equivalent numbers of molecules. This is, in fact, true only for the ideal gases.  <

  • Q : Collision & Transition State Theory

    Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions. b)      Calculate the temperature wh

  • Q : Explain Keplers laws or Keplers

    Explain Keplers laws or Keplers first law, second law and third law? Kepler's laws (J. Kepler) Kepler's first

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3

  • Q : What do you mean by the term fusion

    What do you mean by the term fusion reaction?

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.