--%>

What is heat capacity and how to calculate heat capacity

The temperature reliance of internal energy and enthalpy depends on the heat capacities at constant volume and constant pressure.


The internal energy and enthalpy of chemical systems and the energy changes that accompany chemical reactions depend on the temperature. To make full use of the thermodynamic date we developed, we must see how these data are extended to temperatures other than 25°C.

Heat capacities; it is convenient to deal separately constant pressure processes when the temperature is raised and the energy of the system increases. The heat capacity, already introduced and experimentally determined, as the decrease in the energy of the thermal surroundings that provides the energy to increase the temperature of the system by 1°C, under the specified conditions. Thus we define

1966_heat capacity.png 

And 

68_heat capacity1.png 

If you think of an actual measurement, you see that to increase the temperature of the system, i.e. for ΔT to be positive, there will be a decrease in the energy of the thermal surroundings, that is, ΔUtherm will be negative. The definitions are then being seen to make heat capacities positive quantities.

Heat capacities at constant pressure CP will be used more than will heat capacities at constant volume CV. Some values for CP are given for a temperature of 25°C. All these values for liquids and solids come from experimental, calorimetric studies that depend on the defining equation. Some of the values for gases are experimental, and others are based on calculations of the type of physical properties.

Heat capacities can be used to extend the 25°C thermodynamic quantities to other temperatures. To do so, we will need heat capacity values over a range of temperatures. An analytical expression, rather than a table of values, is needed for most of the calculations we will do. The two empirical CP versus T expressions that have been most used are

CP = a' + b't + c'T2 + ....

And, CP = a + bT + cT-2 + ...

The second of these two forms is more satisfactory. The coefficients that have been deduced for this equation are given for a few substances.

Heat capacities and internal energies and enthalpies: heat capacities, defined in terms of energy changes in the thermal surroundings, can be expressed in terms energy changes in the system.

If any ordinary chemical process occurs and the system has a constant volume ΔUmech = 0 and ΔU = -ΔUtherm, we can express CV as

2156_heat capacity2.png 

If the system is maintained at a constant pressure, ΔH = - ΔUtherm. We can express CP as

190_heat capacity3.png 

Heat capacities in J K-1 mol-1 at constant pressure (parameters for the equation C°P = (a + bT + cT-2):

327_heat capacity4.png 

Heat capacities are characteristics of the system. They are directly linked to the way the internal energy and enthalpy change with temperature when the volume or pressure of the system is correctly controlled.

   Related Questions in Chemistry

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below:    

  • Q : Chem Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?

  • Q : Dipole moment Elaborate a dipole moment

    Elaborate a dipole moment?

  • Q : Einsteins mass energy relation In

    In Einstein’s mass energy relation e = mc2 for what is c employed or why is light needed for the reactions. As the reactions are with the help of neutrons?

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Mole fraction of urea Choose the right

    Choose the right answer from following. When 6gm urea dissolve in180gm H2O . The mole fraction of urea is : (a)10/ 10.1 (b)10.1/10 (c)10.1/ 0.1 (d) 0.1/ 10.1

  • Q : Raoults law Give me answer of this

    Give me answer of this question. Provide solution of this question. Which one of the following is the expression of Raoult's law: (a) P-P1/P = n/n+N (b) P1-P/P = N/ N+n (c)P-P2/P1= N/ N-n (d) P1-P/P2= N-n/N

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : Which is largest planet in our solar

    which is largest planet in our solar system