--%>

What is Flash Photolysis Reactions. Explain with examples.

An example illustrates the type of mechanism that can be written to explain the development of flash photolysis reactions.

Often, as the reactions in the ozone layer of the earth's atmosphere, we are interested in the kinetic behavior of species that are not available as on the shelf chemicals. The rate constants of reactions involving such species as H atoms, O atoms, and OH and HO2 radicals must be known if the dynamics of complex reaction mixtures are to be understood. Rate constant data can sometimes be obtained by generating such species by a high intensity short duration flash of light and then following their subsequent reaction. This approach is known as flash photolysis.

A typical flash used in such studies can generate about 1 mol of produces in the several microsecond duration of the flash. The amount of one or more of the products formed directly or indirectly, is usually determined by measuring the absorption of light at a suitable wavelength. As an illustration of this technique, studies of the formation and reaction of the perhydroxyl radical,H2O are described.

The two reactions are: 

H2O = hv  72_First order reactions1.png OH + H

OH + H2  72_First order reactions1.png H2O + H 

The formation of HO2 radicals by this flash photolysis route and studies of the kinetics of subsequent reactions has been reported. The reaction system contained small amounts of H2Oand O2 and enough H2 to produce a total pressure of 1 atm. The formation of H atoms from the photolysis at water and their attachment to O2 to form HO2 occurred rapidly. Within about 10μs the intermediates, H and OH, were largely consumed. The kinetics of the subsequent reactions ofH2O radicals could then be studied.

The optional transmission at 210 nm, where HO2 absorbs, can be used to follow the decrease of this species. If the reaction that removes HO2 is second order in HO2, the H2O concentration will vary with the time according to:

1/c = 1/ c0 + kt

That the reaction is indeed order is confirmed by the linear relation for 1/ {log (I0 /i)}, which is proportional to 1/c, versus t, as shown in this order and the net product of the reaction, H2O2, suggest that the decay of H2O occurs by the reaction:

HO2 + HO2  72_First order reactions1.png H2O+ O2

The reaction following the initial photolysis process can be changed by changing the reagents in the reaction system.

The principle reaction sequent system then is:

OH + HO2  72_First order reactions1.png H2O + O2

Principal reactions used for the simulation curves:

Reaction Rate constant
OH + H2 72_First order reactions1.png H2O + H 4 × 10L mol-1 s-1
H + O2 H2 72_First order reactions1.png HO2 + H2 2 × 1010 L2 mol-2 s-1
H + O2 + Ar 72_First order reactions1.png HO2 + Ar 6 × 109 L2 mol-2 s-1
H + O2 + H2O 72_First order reactions1.png HO2 + H2O 1.4 × 1011 L2 mol-2 s-1
HO2 + HO2 72_First order reactions1.png H2O2 6 × 109 L mol-1 s-1
OH + HO2 72_First order reactions1.png H2O + O3 1.2 × 1011 L mol-1 s-1

   Related Questions in Chemistry

  • Q : Influence of temperature Can someone

    Can someone please help me in getting through this problem. With increase of temperature, which of the following changes: (i) Molality (ii) Weight fraction of solute (iii) Fraction of solute present in water (iv) Mole fraction.

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Group IV Cations Chromium(III)

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer.

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Illustrations of the reversible reaction

    What are the various illustrations of the reversible reaction? Explain briefly?

  • Q : Problem on decinormal strength Can

    Can someone please help me in getting through this problem. How many grams of dibasic acid (having mol. wt. 200) must be present in 100ml  of its aqueous solution to provide decinormal strength: (i) 1g  (ii)2g  (iii) 10g  (iv) 20g<

  • Q : Functions of centrioles Describe

    Describe briefly the functions of centrioles?

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : How reactive is Trimethylindium towards

    Illustrate the reason, how reactive is Trimethylindium towards oxygen and water?