--%>

What is Flash Photolysis Reactions. Explain with examples.

An example illustrates the type of mechanism that can be written to explain the development of flash photolysis reactions.

Often, as the reactions in the ozone layer of the earth's atmosphere, we are interested in the kinetic behavior of species that are not available as on the shelf chemicals. The rate constants of reactions involving such species as H atoms, O atoms, and OH and HO2 radicals must be known if the dynamics of complex reaction mixtures are to be understood. Rate constant data can sometimes be obtained by generating such species by a high intensity short duration flash of light and then following their subsequent reaction. This approach is known as flash photolysis.

A typical flash used in such studies can generate about 1 mol of produces in the several microsecond duration of the flash. The amount of one or more of the products formed directly or indirectly, is usually determined by measuring the absorption of light at a suitable wavelength. As an illustration of this technique, studies of the formation and reaction of the perhydroxyl radical,H2O are described.

The two reactions are: 

H2O = hv  72_First order reactions1.png OH + H

OH + H2  72_First order reactions1.png H2O + H 

The formation of HO2 radicals by this flash photolysis route and studies of the kinetics of subsequent reactions has been reported. The reaction system contained small amounts of H2Oand O2 and enough H2 to produce a total pressure of 1 atm. The formation of H atoms from the photolysis at water and their attachment to O2 to form HO2 occurred rapidly. Within about 10μs the intermediates, H and OH, were largely consumed. The kinetics of the subsequent reactions ofH2O radicals could then be studied.

The optional transmission at 210 nm, where HO2 absorbs, can be used to follow the decrease of this species. If the reaction that removes HO2 is second order in HO2, the H2O concentration will vary with the time according to:

1/c = 1/ c0 + kt

That the reaction is indeed order is confirmed by the linear relation for 1/ {log (I0 /i)}, which is proportional to 1/c, versus t, as shown in this order and the net product of the reaction, H2O2, suggest that the decay of H2O occurs by the reaction:

HO2 + HO2  72_First order reactions1.png H2O+ O2

The reaction following the initial photolysis process can be changed by changing the reagents in the reaction system.

The principle reaction sequent system then is:

OH + HO2  72_First order reactions1.png H2O + O2

Principal reactions used for the simulation curves:

Reaction Rate constant
OH + H2 72_First order reactions1.png H2O + H 4 × 10L mol-1 s-1
H + O2 H2 72_First order reactions1.png HO2 + H2 2 × 1010 L2 mol-2 s-1
H + O2 + Ar 72_First order reactions1.png HO2 + Ar 6 × 109 L2 mol-2 s-1
H + O2 + H2O 72_First order reactions1.png HO2 + H2O 1.4 × 1011 L2 mol-2 s-1
HO2 + HO2 72_First order reactions1.png H2O2 6 × 109 L mol-1 s-1
OH + HO2 72_First order reactions1.png H2O + O3 1.2 × 1011 L mol-1 s-1

   Related Questions in Chemistry

  • Q : Solubility are halides are halogens

    are halides are halogens more soluble? why?

  • Q : PH of an Alkyl Halide Briefly state the

    Briefly state the pH of an Alkyl Halide?

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Problem based on normality Choose the

    Choose the right answer from following. NaClO solution reacts with H2SO3 as,. NaClO + H2SO3→NaCl+ H2SO4. A solution of NaClO utilized in the above reaction contained 15g of NaClO per litre. The

  • Q : Molecular Diameters The excluded volume

    The excluded volume b, introduced by vander Wall's as an empirical correction term, can be related to the size gas molecules. To do so, we assume the excluded volume is the result of the pairwise coming together of molecules. This assumption is justified when b values

  • Q : Define thermal energy The thermal part

    The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation. All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use o

  • Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : Question based on normality Provide

    Provide solution of this question. A 5 molar solution of H2SO4 is diluted from 1 litre to 10 litres. What is the normality of the solution : (a) 0.25 N (b) 1 N (c) 2 N (d) 7 N

  • Q : Mole fraction of urea Choose the right

    Choose the right answer from following. When 6gm urea dissolve in180gm H2O . The mole fraction of urea is : (a)10/ 10.1 (b)10.1/10 (c)10.1/ 0.1 (d) 0.1/ 10.1