--%>

What is Elevation in boiling point?

The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with temperature are represented by the curves AB and CD respectively. It is evident by the curves temperature the vapour pressure of solutions is lower than that of the pure solvent and thus, the vapour pressure.

Curve for solution runs below that of the pure solvent. At temperature T0, the vapour pressure of the pure solvent becomes equal to the atmospheric pressure. Thus, the atmospheric pressure and therefore, it is necessary to heat the solution to a higher temperature sayT1 in the atmospheric pressure. Thus, it is clear that the solution in higher temperature than the pure solvent. Evidence T1 - T0 (or Δ Tb)is the elevation in boiling point vapour pressure (Δp), the elevation in the boiling point is also proportional to the solute concentration. Thus,

ΔTb ∝ Δp

According to Raoult's law, Δp ∝ xB

∴ ΔTb ∝ xB

1444_elevation in boiling point.png 

1084_elevation in boiling point1.png 

1730_elevation in boiling point2.png 

1333_elevation in boiling point3.png 

If WA is the mass of solvent in kg, then  1283_elevation in boiling point4.png is equal to molality (m) of the solution

ΔTb = kMA m

Here, k and MA are constants and hence their product, i.e. kMA is replaced by another constant K2.

ΔTb = Kb m, where Kb is called boiling point-elevation constant or molal elevation constant or molal ebullioscopic constant.

As elevation in boiling point depends upon the relative number of moles of solute and solvent but does not depend upon the nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : Negative deviation Which one of the

    Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3  

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Finding strength of HCL solution Can

    Can someone please help me in getting through this problem. 1.0 gm of pure calcium carbonate was found to require 50 ml of dilute  HCL for complete reaction. The strength of the HCL  solution is given by: (a) 4 N  (b) 2 N  (c) 0.4 N  (d) 0.2 N

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Relative reactivity Which is more

    Which is more reactive towards nucleophilic substitution aryl halide or vinyl halides

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality