--%>

What is Elevation in boiling point?

The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with temperature are represented by the curves AB and CD respectively. It is evident by the curves temperature the vapour pressure of solutions is lower than that of the pure solvent and thus, the vapour pressure.

Curve for solution runs below that of the pure solvent. At temperature T0, the vapour pressure of the pure solvent becomes equal to the atmospheric pressure. Thus, the atmospheric pressure and therefore, it is necessary to heat the solution to a higher temperature sayT1 in the atmospheric pressure. Thus, it is clear that the solution in higher temperature than the pure solvent. Evidence T1 - T0 (or Δ Tb)is the elevation in boiling point vapour pressure (Δp), the elevation in the boiling point is also proportional to the solute concentration. Thus,

ΔTb ∝ Δp

According to Raoult's law, Δp ∝ xB

∴ ΔTb ∝ xB

1444_elevation in boiling point.png 

1084_elevation in boiling point1.png 

1730_elevation in boiling point2.png 

1333_elevation in boiling point3.png 

If WA is the mass of solvent in kg, then  1283_elevation in boiling point4.png is equal to molality (m) of the solution

ΔTb = kMA m

Here, k and MA are constants and hence their product, i.e. kMA is replaced by another constant K2.

ΔTb = Kb m, where Kb is called boiling point-elevation constant or molal elevation constant or molal ebullioscopic constant.

As elevation in boiling point depends upon the relative number of moles of solute and solvent but does not depend upon the nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Mole fraction of urea Choose the right

    Choose the right answer from following. When 6gm urea dissolve in180gm H2O . The mole fraction of urea is : (a)10/ 10.1 (b)10.1/10 (c)10.1/ 0.1 (d) 0.1/ 10.1

  • Q : Which is polar HCl or HF Which one is

    Which one is polar HCl or HF?

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Product of HCl Zn Illustrate  the

    Illustrate  the product of HCl Zn?

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : Describe characteristics of halides and

    Halides characteristics

  • Q : Excel assignment I want it before 8 am

    I want it before 8 am tomorow please. I am just wondering how much is going to be ?

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu