--%>

What is Elevation in boiling point?

The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with temperature are represented by the curves AB and CD respectively. It is evident by the curves temperature the vapour pressure of solutions is lower than that of the pure solvent and thus, the vapour pressure.

Curve for solution runs below that of the pure solvent. At temperature T0, the vapour pressure of the pure solvent becomes equal to the atmospheric pressure. Thus, the atmospheric pressure and therefore, it is necessary to heat the solution to a higher temperature sayT1 in the atmospheric pressure. Thus, it is clear that the solution in higher temperature than the pure solvent. Evidence T1 - T0 (or Δ Tb)is the elevation in boiling point vapour pressure (Δp), the elevation in the boiling point is also proportional to the solute concentration. Thus,

ΔTb ∝ Δp

According to Raoult's law, Δp ∝ xB

∴ ΔTb ∝ xB

1444_elevation in boiling point.png 

1084_elevation in boiling point1.png 

1730_elevation in boiling point2.png 

1333_elevation in boiling point3.png 

If WA is the mass of solvent in kg, then  1283_elevation in boiling point4.png is equal to molality (m) of the solution

ΔTb = kMA m

Here, k and MA are constants and hence their product, i.e. kMA is replaced by another constant K2.

ΔTb = Kb m, where Kb is called boiling point-elevation constant or molal elevation constant or molal ebullioscopic constant.

As elevation in boiling point depends upon the relative number of moles of solute and solvent but does not depend upon the nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : How alkyl group reactions takes place?

    Halogenations: ethers react with chlorine and bromine to give substitution products. The extent of halogenations depends upon the conditions of reacti

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : Mcq Give me answer of this question.

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Molar concentration of hydrogen 20 g of

    20 g of hydrogen is present in 5 litre of vessel. Determine he molar concentration of hydrogen: (a) 4  (b) 1 (c) 3 (d) 2 Choose the right answer from above.

  • Q : Calculating total vapour pressure

    Select the right answer of the question. The vapour pressure of two liquids P and Q are 80 and 600 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be: (a) 140 torr (b) 20 torr (c) 68 torr (d) 72 torr

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o