--%>

What is depression in freezing point?

Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure.

The freezing point of a pure liquid is preset. Now, if a non-volatile solute is dissolved in the pure liquid to constitute a solution, there occurs a lowering in the freezing point. The freezing point of solution refers to the temperature at which the vapour pressure of the solvent in two phases, i.e. liquid solution and solid solvent is the same. Since the vapour pressure of the solvent at a lower temperature.

Evidently the freezing point of the pure solvent is the temperature corresponding to the point B (T0 K) and that of the solution is the temperature corresponding to the point A'(T1 K). Clearly, (T0 - T1) or ΔTƒ is the freezing point depression. Since its magnitude is determined by that of lowering of vapour pressure, the freezing point depression depends upon the molal concentration of the solute and does not depend upon the nature of solid. It is, thus, a colligative property. The general relation between these two quantities for a solution of non-electrolyte is usually expressed in term of molality of the solution

ΔTƒ  Δp and Δp xB

ΔTƒ = kxB =415_freezing point.png 


For dilute solution, 272_freezing point1.png   and hence,1964_freezing point2.png.


ΔTƒ = k 1278_freezing point3.png  = k582_elevation in boiling point4.pngMA


If WA is the mass of solvent in kg, then   is equal to molality (m) of the solution

ΔTƒ = kMAm     (? kMA = Kƒ)

ΔTƒ =Kƒm, where Kƒ is called Freezing point depression constant or molal depression constant or cryoscopic constant.

As is clear from the above, depression in freezing point depends upon relative number of moles of solute and solvent but does not depend upon nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie

  • Q : Normality of acetic acid Give me answer

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Iso-electronic species Which ion has

    Which ion has the lowest radius from the following ions(a) Na+  (b) Mg2+  (c) Al3+  (d) Si4+ Answer: (d) All are the iso-electronic species but Si

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Molar and Volumetric flow rate problem

    Cyclohexane (C6H12) is produced by mixing Benzene and hydrogen. A process including a reactor, separator, and recycle stream is used to produce Cyclohexane. The fresh feed contains 260L/min C6H6 with 950 L/min of H2

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : Base parachloroaniline is strong base

    parachloroaniline is strong base than paranitroaniline

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality