--%>

What is depression in freezing point?

Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure.

The freezing point of a pure liquid is preset. Now, if a non-volatile solute is dissolved in the pure liquid to constitute a solution, there occurs a lowering in the freezing point. The freezing point of solution refers to the temperature at which the vapour pressure of the solvent in two phases, i.e. liquid solution and solid solvent is the same. Since the vapour pressure of the solvent at a lower temperature.

Evidently the freezing point of the pure solvent is the temperature corresponding to the point B (T0 K) and that of the solution is the temperature corresponding to the point A'(T1 K). Clearly, (T0 - T1) or ΔTƒ is the freezing point depression. Since its magnitude is determined by that of lowering of vapour pressure, the freezing point depression depends upon the molal concentration of the solute and does not depend upon the nature of solid. It is, thus, a colligative property. The general relation between these two quantities for a solution of non-electrolyte is usually expressed in term of molality of the solution

ΔTƒ  Δp and Δp xB

ΔTƒ = kxB =415_freezing point.png 


For dilute solution, 272_freezing point1.png   and hence,1964_freezing point2.png.


ΔTƒ = k 1278_freezing point3.png  = k582_elevation in boiling point4.pngMA


If WA is the mass of solvent in kg, then   is equal to molality (m) of the solution

ΔTƒ = kMAm     (? kMA = Kƒ)

ΔTƒ =Kƒm, where Kƒ is called Freezing point depression constant or molal depression constant or cryoscopic constant.

As is clear from the above, depression in freezing point depends upon relative number of moles of solute and solvent but does not depend upon nature of solute, so it is a colligative property.

   Related Questions in Chemistry

  • Q : Coordination compounds discuss

    discuss practical uses of coordination compounds

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : Ionic radius of chloride ion The edge

    The edge length of the unit cell of Nacl crystal lattice is 552 pm. If ionic radius of sodium ion is 95. What is the ionic radius of chloride ion:(a) 190 pm  (b) 368 pm  (c) 181 pm  (d) 276 pm     <

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace