--%>

What is Boltzmann constant

Boltzmann constant: k (L. Boltzmann) - The constant that explains the relationship between kinetic energy and temperature for molecules in an ideal gas. This is equivalent to the 1.380 622 x 10-23 J/K.

   Related Questions in Physics

  • Q : Define Radian or SI unit of the angular

    Radian: rad: The supplementary SI unit of the angular measure stated as the central angle of a circle whose subtended arc is equivalent to the radius of the circle.

  • Q : Fundamental principles of the regulation

    Describe the fundamental principles of the regulation? Briefly describe the principles?

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.

  • Q : Law of Lamberts Cosine State the law of

    State the law of Lamberts Cosine? Describe briefly?

  • Q : Steps to the scientific notation

    Illustrate the steps to the scientific notation? Briefly illustrate the steps.

  • Q : Black-hole dynamic laws or laws of

    Explain  laws of black-hole dynamics or First law of black hole dynamics and Second law of black hole dynamics? 

    Q : Define Heat pumps Heat pumps move heat

    Heat pumps move heat from one place to another. They work similar to refrigeration. The movement of heat takes energy, either electrical energy as in the use of  vapor compression heat pumps or thermal energy as in the use of absorption heat pump

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?

  • Q : What is Magnetic monopole Magnetic

    Magnetic monopole: The hypothetical particle that comprises sources and sinks of the magnetic field. The magnetic monopoles have never been found, however would only cause pretty minor modifications to the Maxwell's equations. They also appear to be p

  • Q : Define Eddington limit Eddington limit

    Eddington limit (Sir A. Eddington): The hypothetical limit at which the photon pressure would surpass the gravitational attraction of a light-emitting body. That is, a body emanating radiation at bigger than the Eddington limit would