--%>

What is adsorption and its examples.

In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the other hand, a molecule present at the surface is not attracted to other molecules form all sides because there are no neighbouring molecules above the surface. Hence, it possesses some unbalanced or residual forces. As a result of these unbalanced forces the molecules present at the liquid surfaces tend to satisfy their residual forces by attracting the molecules of other species when brought in contact with them and retaining them on the surface. This causes increase in concentration of the molecular species near the surfaces as compared to its bulk phases. This accumulation of molecular species at the surface rather than in bulk of a solid or liquid is referred to as adsorption. The molecular species or a substance which concentrates or accumulates at the surface is called adsorbate. The material on the surface of which adsorption is called adsorbent.

The adsorbate and adsorbent process of removal of an adsorbed substances from surfaces is called desorption. It is reverse of adsorption and can be brought about by reducing the pressure or by heating.

Some examples of adsorption

(i) When gases like O2, H2, CO, Cl2, NH3 or SO2, are taken in a closed vessel containing powdered charcoal. It is observed that the pressure of the enclosed vessel decreases. The gas molecules get adsorbed on the surface of charcoal.

(ii) Aqueous solution of raw sugar when passed over beds of animal charcoal becomes colourless because the colouring matter of sugar is adsorbed by the animal charcoal surface.

(iii) The air becomes dry in the presence of silica gel because water molecules get adsorbed on the surface of silica gel.

(iv) When animal charcoal is added to a solution of some organic dye (say methylene blue) and the contents are filtered after thorough shaking, it is observed that the filtrate is almost colourless. The molecules of the dye are adsorbed on the surface of animal charcoal.

The above examples clarify that the solid surfaces can hold the gas or liquid molecules because of adsorption.

   Related Questions in Chemistry

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Relative lowering of vapour pressure

    explain the process of relative lowering of vapour pressure

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below:    

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : Molarity of acid solution If 20ml of

    If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is: (a) 0.1M (b) 0.2M  (c) 0.3M (d) 0.4M Choose the right answer fron above.

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : What are the various types of drugs

    Drugs are broadly classified into following types depending on the purpose for which they are used. 1. Antipyretics

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the