--%>

What are various structure based polymers?

This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as:


1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight chains. The polymeric chains are stacked over one another to give a well packed structure. As a result of close packing, such polymers have densities, high tensile strength and high melting points. Common examples of such type of polymers are polyethylene, nylons and polyesters.

2. Branched chain polymers: in this type of polymers, the monomeric units are linked to constitute, long chains (called the main-chain). There are side chains of varied lengths which comprise branches. Branched chain polymers are irregularly packed and thus, they have low density, lower tensile strength and lower melting points as compared to linear polymers. Amylopectin and glycogen are common examples of this type.

3. Network polymers or Cross-linked:
 in this type of polymers, the monomeric units are linked together to constitute a three-dimensional network. The links involved are called cross-links. Cross-linked polymers are hard, rigid and brittle because of their network structure. Common examples of this type of polymers are Bakelite, melamine formaldehyde resin, etc.

 

 

   Related Questions in Chemistry

  • Q : Chem Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o

  • Q : Molecular Symmetry Types The number of

    The number of molecular orbitals and molecular motions of each symmetry type can be deduced. Let us continue to use the C2v point group and the H2O molecule to illustrate how the procedure develop

  • Q : Solutions The relative lowering of

    The relative lowering of vapour pressure of 0.2 molal solution in which solvent is benzene

  • Q : Entropy is entropy on moleculare basis

    is entropy on moleculare basis relates to the tras.,vib.,and rotational motions?

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Question associated to vapour pressure

    Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Mole fraction of urea Choose the right

    Choose the right answer from following. When 6gm urea dissolve in180gm H2O . The mole fraction of urea is : (a)10/ 10.1 (b)10.1/10 (c)10.1/ 0.1 (d) 0.1/ 10.1