--%>

What are Vander Waal's Radii?

Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. 

Diffraction studies of crystals give information about hoe molecules can approach each other and can pack together. Forces, often treated under the name vander Waal's forces, provide the attraction and repulsion between molecules that are responsible for the closeness with which molecules can approach other. The idea of a vander Waals radius for each covalently bound atom is introduced. The shapes attributed to molecules as a result of the introduction of vander Waals radii.

The values of these radii can be deduced from the distances that separate atoms in different molecules in a crystal lattice. In crystalline Br2, the shortest distance between a bromine atom of one molecule and that of an adjacent molecule is 390 pm. Half this value, 195 pm, can therefore be assigned as the van der Waals radius of a covalently bound bromine atom. In similar ways, by making use of crystal structure data for many organic compounds, the van der Waals radii can be deduced. These values must be considered reliable to not more than about 5 pm, and this uncertainty makes itself evident in the range of values found for a particular element in different compounds and crystals. The values are sufficiently reliable, however, for scale drawings to be constructed and used to see hoe molecules can fit together. That van der Waals radii can be assigned with some success is attributable to the fact, mentioned, that the repulsive forces set in very strongly i.e. the potential energy curve raised very steeply, as atoms approach each other. It follows that even when rather different attractive forces operate, the closeness of approach is affected little.


2125_Vander waals.png

   Related Questions in Chemistry

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,

  • Q : What is schrodinger wave equation? The

    The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace

  • Q : Solutions The relative lowering of

    The relative lowering of vapour pressure of 0.2 molal solution in which solvent is benzene

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : F-centres If a electron is present in

    If a electron is present in place of anion in a crystal lattice, then it is termed as: (a) Frenkel defect  (b) Schottky defect  (c) Interstitial defects (d) F-centre Answer: (d) When electrons are trapped in anion vacancies, thes

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Molar mass of solute The boiling point

    The boiling point of benzene is 353.23 K. If 1.80 gm of a non-volatile solute was dissolved in 90 gm of benzene, the boiling point is increased to 354.11 K. Then the molar mass of the solute is: (a) 5.8g mol-1  (b)