--%>

What are Vander Waal's Radii?

Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. 

Diffraction studies of crystals give information about hoe molecules can approach each other and can pack together. Forces, often treated under the name vander Waal's forces, provide the attraction and repulsion between molecules that are responsible for the closeness with which molecules can approach other. The idea of a vander Waals radius for each covalently bound atom is introduced. The shapes attributed to molecules as a result of the introduction of vander Waals radii.

The values of these radii can be deduced from the distances that separate atoms in different molecules in a crystal lattice. In crystalline Br2, the shortest distance between a bromine atom of one molecule and that of an adjacent molecule is 390 pm. Half this value, 195 pm, can therefore be assigned as the van der Waals radius of a covalently bound bromine atom. In similar ways, by making use of crystal structure data for many organic compounds, the van der Waals radii can be deduced. These values must be considered reliable to not more than about 5 pm, and this uncertainty makes itself evident in the range of values found for a particular element in different compounds and crystals. The values are sufficiently reliable, however, for scale drawings to be constructed and used to see hoe molecules can fit together. That van der Waals radii can be assigned with some success is attributable to the fact, mentioned, that the repulsive forces set in very strongly i.e. the potential energy curve raised very steeply, as atoms approach each other. It follows that even when rather different attractive forces operate, the closeness of approach is affected little.


2125_Vander waals.png

   Related Questions in Chemistry

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Eutectic Formation In some two

    In some two component, solid liquid systems, a eutectic mixture forms.Consider, now a two component system at some fixed pressure, where the temperature range treated is such as to include formation of one or more solid phases. A simple behavior is shown b

  • Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : Normality how 0.5N HCL is prepared for

    how 0.5N HCL is prepared for 10 littre solution

  • Q : Production of alcoholic drinks give all

    give all physical aspects in the production of alcohol

  • Q : Calculating amount of Sodium hydroxide

    Choose the right answer from following. The amount of NaOH in gms in 250cm3 of a0.100M NaOH solution would be : (a) 4 gm (b) 2 gm (c) 1 gm (d) 2.5 gm

  • Q : Influence of temperature Can someone

    Can someone please help me in getting through this problem. With increase of temperature, which of the following changes: (i) Molality (ii) Weight fraction of solute (iii) Fraction of solute present in water (iv) Mole fraction.

  • Q : How to calculate solutions molar

    The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance. The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that th

  • Q : Numerical The volume of water to be

    The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3